4-1. Equation and polynomials of Laguerre
We define Laguerre differential equation in the following form
\begin{equation}
\frac{d^2 y}{dx^2} + (1 - x) \frac{dy}{dx} + ny = 0
\end{equation}
And its solution is
\begin{equation}
L_n(x) = \sum_{r=0}^{n} \frac{(-1)^r}{(n-r)!(r!)^2} x^r
\end{equation}

- Generating function
Theorem 1.
\begin{equation}
\frac{\exp \{-xt/(1-t)\}}{1-t} = \sum_{n=0}^\infty L_n(x)t^n
\end{equation}
Proof. Since
\begin{align*}
\frac{1}{1-t} \exp \{-xt/(1-t)\} &= \frac{1}{1-t} \sum_{r=0}^\infty \frac{1}{r!} (-\frac{xt}{1-t})^r \\
&= \sum_{r=0}^\infty \frac{(-1)^r}{r!(1-t)^{r+1}} x^r t^r \\
\end{align*}
From Polynomials we have
\begin{align*}
\frac{1}{(1-t)^{r+1}} &= 1 + (r+1)t + \frac{(r+1)(r+2)}{2!} t^2 + \frac{(r+1)(r+2)(r+3)}{3!} t^3 + \ldots \\
&= \sum_{k=0}^\infty \frac{(r+k)!}{k!r!} t^k
\end{align*}
Then we have
\begin{equation}
\frac{1}{1-t} \exp \{-xt/(1-t)\} = \sum_{r,k=0}^\infty (-1)^r \frac{(r+k)!}{(r!)^2k!} x^r t^{r+k}
\end{equation}
For fixed \(r \) we can get the coefficient of \(t^n \) by putting \(r+k = n \), then coef. of \(t^n \) in equation (4.8) as following
\begin{align*}
(-1)^r \frac{n!}{(r!)^2(n-r)!} x^r
\end{align*}
Then we have the following relation:
\begin{equation}
L_n(x) = \sum_{r=0}^{n} (-1)^r \frac{n!}{(r!)^2(n-r)!} x^r.
\end{equation}
• **Important relation for Laguerre polynomials**

Theorem 2.

\[(4.10) \quad L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})\]

Use Leibnitz’s theorem for differentiation

\[
\frac{d^n}{dx^n} (uv) = \sum_{r=0}^{n} \frac{n!}{(n-r)! r!} \frac{d^{n-r}}{dx^{n-r}} u \left(\frac{d^r}{dx^r} v \right).
\]

We have the following

\[
\frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x}) = \frac{e^x}{n!} \sum_{r=0}^{n} \frac{n!}{(n-r)! r!} \frac{d^{n-r}}{dx^{n-r}} x^n \left(\frac{d^r}{dx^r} e^{-x} \right)
\]

But

\[
\frac{d^k}{dx^k} x^m = m(m-1) \cdots (m-k+1)x^{m-k}
\]

Then we have the following:

\[
\frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x}) = \frac{e^x}{n!} \sum_{r=0}^{n} \frac{n!}{(n-r)! r!} x^r (-1)^r e^{-x}
\]

\[
= \sum_{r=0}^{n} (-1)^r \frac{n!}{(r!)^2 (n-r)!} x^r = L_n(x)
\]

Then form Laguerre function we can deduce that:

\[
L_0(x) = 1 \quad , \quad L_1(x) = 1 - x
\]

\[
L_2(x) = \frac{1}{2!} (x^2 - 4x + 2)
\]

\[
L_3(x) = \frac{1}{3!} (-x^3 + 9x^2 - 18x + 6)
\]

\[
L_4(x) = \frac{1}{4!} (x^4 - 16x^3 + 72x^2 - 96x + 24)
\]

Theorem .r

(i) \(L_n(0) = 1 \) \quad (ii) \(L'_n(0) = -n \)

Proof. Since

\[
\frac{1}{1-t} \exp \left\{ -xt/(1-t) \right\} = \sum_{n=0}^{\infty} L_n(x)t^n
\]

Put \(x = 0 \), we have

\[
\frac{1}{1-t} = \sum_{n=0}^{\infty} L_n(0)t^n
\]
Using the binomial theorem in the L.H.S. we have
\[
\frac{1}{1-t} = \sum_{m=0}^{\infty} t^m
\]
Then we have
\[
\sum_{m=0}^{\infty} t^m = \sum_{n=0}^{\infty} L_n(t)
\]
Equating coef. of \(t^n \) we get relation (i).
To have relation (ii) we use General Laguerre equation
\[
x \frac{d^2}{dx^2} L_n(x) + (1-x) \frac{d}{dx} L_n(x) + nL_n(x) = 0
\]
Put \(x = 0 \) we have
\[
L_n'(0) + nL_n(0) = 0
\]
Use relation (i) we have
\[
L_n'(0) = -n
\]
which complete the proof.

Similarly as in the above theorem, we can prove the following relations
\[
L_n''(0) = \frac{1}{2} n(n-1)
\]
Differentiating the generating function twice we have the following relation
\[
\frac{1}{1-t} e^{\frac{-t}{1-t}} \left(\frac{-t}{1-t} \right)^2 = \sum_{n=0}^{\infty} L_n''(x) t^n
\]
Put \(x = 0 \) we have
\[
\frac{t^2}{(1-t)^3} = \sum_{n=0}^{\infty} L_n''(0) t^n
\]
Use the binomial theorem in the L.H. S. we have
\[
t^2 \left\{ 1 + 3t + \frac{3 \cdot 4}{2!} t^2 + \frac{3 \cdot 4 \cdot 5}{3!} t^3 + \cdots + \frac{3 \cdot 4 \cdot 5 \cdots n}{(n-2)!} t^{n-2} + \cdots \right\} = \sum_{n=0}^{\infty} L_n''(0) t^n
\]
Equating coef. of \(t^n \), we have
\[
L_n''(0) = \frac{3 \cdot 4 \cdot 5 \cdots n}{(n-2)!} = \frac{n!}{2(n-2)!} = \frac{n(n-1)}{2}
\]

Orthogonal relation for Laguerre Polynomials.

Theorem 4.
\[
(4.12) \int_{0}^{\infty} e^{-x} L_n(x) L_m(x) dx = \delta_{nm}
\]
Proof. From the generating function we have
\[
\frac{\exp \{ -xt / (1-t) \}}{1-t} = \sum_{n=0}^{\infty} L_n(x) t^n \\
\frac{\exp \{ -xs / (1-s) \}}{1-s} = \sum_{m=0}^{\infty} L_m(x) s^m
\]

Then we have
\[
\frac{1}{(1-t)(1-s)} \exp \left\{ -\frac{xt}{1-t} \right\} \exp \left\{ -\frac{xs}{1-s} \right\} = \sum_{n,m} L_n(x) L_m(x) t^n s^m
\]

Multiply both sides by \(e^{-x} \) and integrate we have
\[
(4.13) \int_{0}^{\infty} e^{-x} L_n(x) L_m(x) dx = I
\]

Then we claim
\[
\int_{0}^{\infty} e^{-x} L_n(x) L_m(x) dx
\]

Represent the coef. of \(t^n s^m \) in the integral \(I \), where
\[
I = \int_{0}^{\infty} e^{-x} \exp \left\{ -\frac{xt}{1-t} \right\} \exp \left\{ -\frac{xs}{1-s} \right\} dx
\]
\[
= \frac{1}{(1-t)(1-s)} \int_{0}^{\infty} \exp[-x] \cdot \exp\left[-\frac{xt}{1-t}\right] \cdot \exp\left[-\frac{xs}{1-s}\right] dx
\]
\[
= \frac{1}{(1-t)(1-s)} \int_{0}^{\infty} \exp \left\{ -x \left(1 + \frac{t}{1-t} + \frac{s}{1-s} \right) \right\} dx
\]
\[
= \frac{1}{(1-t)(1-s)} \left[\frac{-1}{1 + \{ t/(1-t) \} + \{ s/(1-s) \} } \exp \left\{ -x \left(1 + \frac{t}{1-t} + \frac{s}{1-s} \right) \right\} \right]_{0}^{\infty}
\]
\[
= \frac{1}{(1-t)(1-s)} \cdot \frac{1}{1 + \frac{t}{1-t} + \frac{s}{1-s}}
\]
\[
= \frac{1}{(1-t)(1-s) + t(1-s) + s(1-t)}
\]
\[
= \frac{1}{1-st}
\]

Then we have the value of the integral
\[
I = \sum_{n=0}^{\infty} s^n t^n
\]

Then relation (4.13) becomes
\[t^n s^m \int_0^\infty \! e^{-x} L_n(x) L_m(x) \, dx = t^n s^n \]

Then if \(n \neq m \) we have

\[(4.14) \int_0^\infty \! e^{-x} L_n(x) L_m(x) \, dx = 0 \]

If \(n = m \), then

\[(4.15) \int_0^\infty \! e^{-x} \left(L_n(x) \right)^2 \, dx = 1 \]

We can represent any relation in Laguerre polynomial by using this relation as following. Let \(f(x) \) is defined for all values of \(x \) then we can write it in the form

\[f(x) = \sum_{n=0}^\infty A_n L_n(x) \]

Apply orthogonal relation, we have

\[(4.16) A_n = \int_0^\infty \! e^{-x} f(x) L_n(x) \, dx . \]

4.7. Recurrence relations.

We will prove some important recurrence relations as following

\[(4.17) \]

(i) \((n + 1) L_{n+1}(x) = (2n + 1 - x) L_n(x) - nL_{n-1}(x) \)

Proof. Since

\[\frac{1}{1-t} \exp \left\{ -xt/(1-t) \right\} = \sum_{n=0}^\infty L_n(x) t^n \]

Differentiate w.r.to \(t \), we have

\[\frac{1}{(1-t)^2} \left\{ -x(1-t) \frac{(1-t)+t}{(1-t)^2} \exp \left\{ \frac{-xt}{1-t} \right\} + \exp \left\{ \frac{-xt}{1-t} \right\} \right\} \]

\[= \sum_{n=1}^\infty \frac{L_n(x)}{(n-1)!} t^{n-1} \]

Then we have

\[\frac{1}{(1-t)^3} \left\{ -x \exp \left\{ \frac{-xt}{1-t} \right\} + (1-t) \exp \left\{ \frac{-xt}{1-t} \right\} \right\} = \sum_{n=1}^\infty nL_n(x) t^{n-1} \]

\[\frac{1-x-t}{(1-t)^3} \exp \left\{ \frac{-xt}{1-t} \right\} = \sum_{n=1}^\infty nL_n(x) t^{n-1} \]

The L.H.S. in the last equation can be written in the form

\[\frac{1-x-t}{(1-t)^2} \sum_{n=0}^\infty L_n(x) t^n = \sum_{n=1}^\infty nL_n(x) t^{n-1} \]
Multiply both sides by \((1-t)^2\), we have
\[
(1-x)\sum_{n=0}^{\infty} L_n(x)t^n - \sum_{n=0}^{\infty} L_n(x)t^{n+1} = (1-2t+t^2)\sum_{n=1}^{\infty} nL_n(x)t^{n-1}
\]

Equating coeff. of \(t^n\), we have
\[
(1-x)L_n(x) - nL_{n-1}(x) = (n+1)L_{n+1}(x) - 2nL_n(x) + (n-1)L_{n-1}(x)
\]
Then
\[
(1-x+2n)L_n(x) - nL_{n-1}(x) = (n+1)L_{n+1}(x)
\]
Which complete the proof.

To prove the relation
\[(4.18)\] (ii) \(L'_n(x) = [L'_{n-1}(x) - L_{n-1}(x)]\)

Differentiate the generating function (*) w.r.to \(x\) we have
\[
\frac{-t}{(1-t)^2} \exp\left(-\frac{xt}{1-t}\right) = \sum_{n=0}^{\infty} L'_n(x)t^n
\]
OR
\[
(\star\star) -\frac{t}{1-t} \sum_{n=0}^{\infty} L_n(x)t^n = \sum_{n=0}^{\infty} L'_n(x)t^n
\]

Multiply both sides by \((1-t)\), we have
\[
-\sum_{n=0}^{\infty} L_n(x)t^{n+1} = \sum_{n=0}^{\infty} L'_n(x)t^n - \sum_{n=0}^{\infty} L'_n(x)t^{n+1}
\]
Equating coeff. of \(t^n\) in both sides
\[
-L_{n-1}(x) = L'_n(x) - L'_{n-1}(x)
\]
Then we have
\[
[L'_{n-1}(x) - L_{n-1}(x)] = L'_n(x)
\]
We can obtain many recurrence relations from equation (4.18) by shifting \(n\) by \(n-1\).

We can prove the following relation:

\[(4.19)\] (iii) \(xL'_n(x) = nL_n(x) - nL_{n-1}(x)\)

To prove this relation use relation (4.17)
\[
(1+n)L_{n+1}(x) = (2n+1-x)L_n(x) - nL_{n-1}(x)
\]
Differentiate w.r.to \(x\), we have
\[(4.20)\] \((1+n)L'_{n+1}(x) = (2n+1-x)L'_n(x) - L_n(x) - nL'_{n-1}(x)\]
And use the relation
\[
L'_{n+1}(x) = L'_n(x) - L_n(x)
\]
And the following form
\[L'_{n-1}(x) = L'_n(x) + L_{n-1}(x) \]

We get the following:
\[
(n + 1)\left\{ L'_n(x) - L_n(x) \right\} = (2n + 1 - x) L'_n(x) - L_n(x) - n\left\{ L'_n(x) - L_{n-1}(x) \right\}
\]

Then we have
\[-nL_n(x) = -xL'_n(x) - nL_{n-1}(x)\]

Then we have the required.

To prove the following relation

\[
(4.21) \text{ (iv) } L'_n(x) = -\sum_{r=0}^{n-1} L_r(x)
\]

Where
\[
(i) \frac{1}{1-t} = \sum_{r=0}^{\infty} t^r
\]

From the relation (***)
\[
\sum_{n=0}^{\infty} L'_n(x)t^n = \frac{-t}{1-t} \sum_{n=0}^{\infty} L_n(x)t^n
\]

Use relation (i) in the relation (***) , we have
\[
\sum_{n=0}^{\infty} L'_n(x)t^n = -t \sum_{s=0}^{\infty} t^s \sum_{s=0}^{\infty} L_s(x) t^s
\]

Which can be written in the form
\[
\sum_{n=0}^{\infty} L'_n(x)t^n = -\sum_{r,s=0}^{\infty} L_s(x) t^{r+s+1}
\]

To have coeff. of \(t^n \), we should put in the R.H.S. \(n = r + s + 1 \) or \(r = n - s - 1 \), then
\[n - s - 1 \geq 0 \text{ or } s \leq n - 1, \text{ we have} \]
\[
\text{coeff. } t^n = \sum_{s=0}^{n-1} -L_s(x)
\]

Then we have
\[
L'_n(x) = -\sum_{s=0}^{n-1} L_s(x).
\]

f-V. Associated Laguerre Polynomial

The differential equation
\[(4.22) x \frac{d^2 y}{dx^2} + (k + 1 - x) \frac{dy}{dx} + ny = 0\]

Is called associated laguerre equation. If \(k = 0 \) is called Laguerre equation and its solution is \(y = L_n(x) \), while the solution of equation (4.22) is from the following theorem.
Theorem 5. If \(z(x,s) \) is solution of Laguerre equation of order \((n+k)\), then
\[
d^k z \frac{d^k}{dx^k} \]
 satisfies associated Laguerre equation.

Proof. Since \(z(x,s) \) is a solution of Laguerre equation of order \((n+k)\), then it satisfy the equation
\[
(4.23) x \frac{d^2 z}{dx^2} + (1-x) \frac{dz}{dx} + (n+k)z = 0
\]
Differentiate \(k\) times and use Leibniz theorem as following
\[
\left[x \frac{d^2 z}{dx^2} \right]^{(k)} + \left[(1-x) \frac{dz}{dx} \right]^{(k)} + (n+k)z^{(k)} = 0
\]
Where \((k)\) represent the derivative of order \(k\).
Then we have
\[
x z^{(k+2)} + k z^{(k+1)} + (1-x) z^{(k+1)} - k z^{(k)} + (n+k) z^{(k)} = 0
\]
This can be written in the following form:
\[
x z^{(k+2)} + (k+1-x) z^{(k+1)} + nz^{(k)} = 0
\]
The last equation can be written in the following form:
\[
x \frac{d^2 z}{dx^2} z^{(k)} + (k+1-x) \frac{dz}{dx} z^{(k)} + n z^{(k)} = 0
\]
Then \(z^{(k)}\) satisfy the required equation.

From the above it is clear that \(L_n(x) \) satisfy Laguerre equation. Then
\[
\frac{d^k}{dx^k} L_{n+k}(x) \text{ satisfy associated Laguerre equation, then from the definition}
\]
\[
(4.24) L_n^k(x) = (-1)^k \frac{d^k}{dx^k} L_{n+k}(x) \quad (k < n)
\]
This is called associated Laguerre function.

Theorem 6.
\[
(4.25) L_n^k(x) = \sum_{r=0}^{n} (-1)^r \frac{(n+k)! x^r}{(n-r)!(k+r)! r!}
\]

Proof. Since we proved that
\[
L_n(x) = \sum_{r=0}^{n} (-1)^r \frac{n! x^r}{(n-r)!(r!)^2} \quad \text{By shifting every } n \text{ by } n+k, \text{ we have}
\]
\[
(4.26) L_{n+k}(x) = \sum_{r=0}^{n+k} (-1)^r \frac{(n+k)! x^r}{(n+k-r)!(r!)^2}
\]
Use (4.24), we have
\[L^k_n(x) = (-1)^k \frac{d^k}{dx^k} \sum_{r=0}^{n+k} (-1)^r \frac{(n+k)!x^r}{(n+k-r)!(r!)^2} \]

Note that the derivatives equal zero for \(r < k \), then the last equation can be written in the form:

\[L^k_n(x) = (-1)^k \frac{d^k}{dx^k} \sum_{r=k}^{n+k} (-1)^r \frac{(n+k)!x^r}{(n+k-r)!(r!)^2} \]

Note that:

\[
\frac{d^k}{dx^k} x^r = r(r-1)\cdots(r-k+1)x^{r-k}
\]

\[= x^{r-k} \left[\frac{r(r-1)\cdots(r-k+1)(r-k)(r-k-1)\cdots3\cdot2\cdot1}{(r-k)(r-k-1)\cdots3\cdot2\cdot1} \right]
\]

\[= \frac{r!}{(r-k)!} x^{r-k} \]

Then we have

\[L^k_n(x) = (-1)^k \sum_{r=k}^{n+k} (-1)^r \frac{(n+k)!x^{r-k}}{(n+k-r)!(r!)^2} \]

Put \(r-k = s \), we have

\[L^k_n(x) = (-1)^k \sum_{s=0}^{n} (-1)^{k+s} \frac{(n+k)!x^s}{(n-s)!s!(s+k)!} \]

And we have

\[L^k_n(x) = \sum_{s=0}^{n} (-1)^s \frac{(n+k)!x^s}{(n-s)!(s+k)!s!} \]

Then we can prove the following simple relations:

\[L'_1(x) = -1 \quad , \quad L'_2(x) = -4 + 2x \quad , \quad L'_3(x) = 2 \cdot \]

4-7 Properties of associated Laguerre function:

Theorem 4. The generating function for associated Laguerre function takes the form:

\[(4.27) \quad \frac{\exp \{-xt/(1-t)\}}{(1-t)^{k+1}} = \sum_{n=0}^{\infty} L^k_n(x)t^n. \]

Proof. Since

\[\frac{\exp \{-xt/(1-t)\}}{(1-t)} = \sum_{n=0}^{\infty} L_n(x)t^n \]

Differentiate \(k \) times, we have
\[\frac{d^k}{dx^k} \left[\exp \left\{ -xt/(1-t) \right\} \right] = \frac{d^k}{dx^k} \sum_{n=0}^{\infty} L_n(x)t^n \quad (k < n) \]

Since all the derivative of order less than \(k \) equal to zero, then the last equation can be written as

\[(\ast) \frac{d^k}{dx^k} \left[\exp \left\{ -xt/(1-t) \right\} \right] = \frac{d^k}{dx^k} \sum_{n=k}^{\infty} L_n(x)t^n \]

Put \(n-k = s \) in the R.H.S, we have

\[\frac{d^k}{dx^k} \sum_{n=k}^{\infty} L_n(x)t^n = \frac{d^k}{dx^k} \sum_{s=0}^{\infty} L_{s+k}(x)t^{s+k} \]

\[= \frac{d^k}{dx^k} \sum_{n=0}^{\infty} L_{n+k}(x)t^{n+k} \]

\[ds \frac{d^k}{dx^k} \sum_{n=k}^{\infty} L_n(x)t^n = \sum_{n=0}^{\infty} (-1)^k L_n^k(x)t^{n+k} \]

Use equation (4.24), then equation (\ast) will be in the form:

\[\frac{d^k}{dx^k} \left[\exp \left\{ -xt/(1-t) \right\} \right] = \sum_{n=0}^{\infty} (-1)^k L_n^k(x)t^{n+k} \]

Differentiate the L.H.S. \(k \) times we have

\[\frac{(-1)^k}{(1-t)^{k+1}} \left[\exp \left\{ \frac{-xt}{1-t} \right\} \right] = \sum_{n=0}^{\infty} (-1)^k L_n^k(x)t^{n+k} \]

Ten we have the required.

Similarly the students can prove the following relations:

(4.28) (i) \(L_n^k(x) = e^x x^{-k} \frac{d^n}{dx^n} \left(x^{n+k} e^{-x} \right) \)

And the following orthogonal relation:

(4.29) (ii) \(\int_0^\infty e^{-x} x^k L_n(x)L_m^k(x)dx = \frac{(n+k)!}{n!} \delta_{nm} \)

4-6 Recurrence relations for associated Laguerre function:

(4.30) (i) \(L_{n-1}^k(x) + L_{n-1}^k(x) = L_n^k(x) \)

Proof. Use equation (4.25)

\[L_n^k(x) = \sum_{r=0}^{n} (-1)^r \frac{(n+k)!x^r}{(n-r)!(k+r)!r!} \]

We have
\[L^k_{n-1}(x) + L^{-1}_n(x) = \sum_{r=0}^{n-1} (-1)^r \left(\frac{(n-1+k)!x^r}{(n-1-r)!(k+r)!} + \sum_{r=0}^{n} (-1)^r \frac{(n+k-1)!x^r}{(n-r)!(k-1+r)!} \right) + (-1)^n \frac{(n+k-1)!x^n}{(n-n)!(k-1+n)!n!} \]

\[L^k_n(x) + L^{-1}_{n+1}(x) = \sum_{r=0}^{n-1} (-1)^r \frac{(n+k-1)!x^r}{(n-r-1)!(k+r+1)!r!} \left\{ \frac{1}{k+r} + \frac{1}{n-r} \right\} + (-1)^n \frac{x^n}{n!} \]

\[= (-1)^n \frac{x^n}{n!} + \sum_{r=0}^{n-1} (-1)^r \frac{(n+k-1)!x^r}{(n-r-1)!(k+r+1)!r!} \left(\frac{1}{k+r} + \frac{1}{n-r} \right) \]

\[= (-1)^n \frac{x^n}{n!} + \sum_{r=0}^{n-1} (-1)^r \frac{(n+k)(n+k-1)!x^r}{(n-r-1)!(k+r+1)!r!(k+r)(n-r)} \]

\[= (-1)^n \frac{x^n}{n!} + \sum_{r=0}^{n-1} (-1)^r \frac{(n+k)!x^r}{(n-r)!(k+r)!r!} \]

\[= \sum_{r=0}^{n} (-1)^r \frac{(n+k)!x^r}{(n-r)!(k+r)!r!} = \text{R.H.S.} \]

The second relation

\[(4.31) \text{(ii)} \quad (n+1)L^k_{n+1}(x) = (2n+k+1-x)L^k_n(x) - (n+k)L^k_{n-1}(x) \]

Proof. From equation (4.17)

\[(n+1)L_{n+1}(x) = (2n+1-x)L_n(x) - nL_{n-1}(x) \]

By shifting \(n\) by \(n+k\) in the above equation, we have

\[(n+k+1)L_{n+k+1}(x) = (2n+2k+1)L_{n+k}(x) - xL_{n+k}(x) - (n+k)L_{n+k-1}(x) \]

Differentiate \(k\) times, we have

\[(n+k+1) \frac{d^k}{dx^k} L_{n+k+1}(x) = (2n+2k+1) \frac{d^k}{dx^k} L_{n+k}(x) \]

\[- \frac{d^k}{dx^k} \{xL_{n+k}(x)\} - (n+k) \frac{d^k}{dx^k} L_{n+k-1}(x) \]

Apply Leibniz theorem

\[(n+k+1)L^{(k)}_{n+k+1}(x) = (2n+2k+1)L^{(k)}_{n+k}(x) - xL^{(k)}_{n+k}(x) - kL^{(k-1)}_{n+k}(x) \]

\[- (n+k)L^{(k)}_{n+k-1}(x) \]

Use the relation

\[L^k_n(x) = (-1)^k \frac{d^k}{dx^k} L_{n+k}(x) = (-1)^k L^k_{n+k}(x) \]

We have
\[(n+k+1)(-1)^{k} L_{n+1}^{k}(x) = (2n+2k+1)(-1)^{k} L_{n}^{k}(x) - \]

Use
\[-(-1)^{k} xL_{n}^{k}(x) - (-1)^{k-1} k L_{n+1}^{k-1}(x) - (-1)^{k} (n+k)L_{n}^{k}(x) \]

equation (4.30), we have
\[(n+k+1) L_{n+1}^{k}(x) = (2n+2k+1) L_{n}^{k}(x) - xL_{n}^{k}(x) + k [L_{n+1}^{k}(x) - L_{n}^{k}(x)] - (n+k) L_{n}^{k}(x) \]

Then equation (*) take the form
\[(n+k+1) L_{n+1}^{k}(x) = (2n+2k+1) L_{n}^{k}(x) - xL_{n}^{k}(x) + k [L_{n+1}^{k}(x) + L_{n}^{k}(x)] - (n+k) L_{n}^{k}(x) \]

Apply relation (4.30) again by replace every \(n \) by \(n+1 \), we have
\[(n+k+1) L_{n+2}^{k}(x) = (2n+k+1) L_{n+1}^{k}(x) - xL_{n+1}^{k}(x) + k [L_{n+2}^{k}(x) + L_{n+1}^{k}(x)] - (n+k) L_{n+1}^{k}(x) \]

Then we have
\[(n+1) L_{n+1}^{k}(x) = (2n+k+1) L_{n}^{k}(x) - xL_{n}^{k}(x) - (n+k) L_{n}^{k}(x). \]

The third equation
\[(4.32) \text{ (iii)} \quad xL_{n}^{k}(x) = nL_{n}^{k}(x) - (n+k) L_{n}^{k}(x) \]

Use the relation (4.19)
\[xL_{n}^{k}(x) = nL_{n}^{k}(x) - nL_{n-1}^{k}(x) \]

Shift \(n \) by \(n+k \), we have
\[xL_{n+k}^{k}(x) = (n+k) L_{n+k}^{k}(x) - (n+k) L_{n+k-1}^{k}(x) \]

Differentiate \(k \) times
\[\frac{d^{k}}{dx^{k}} \{ xL_{n+k}^{k}(x) \} = (n+k) \frac{d^{k}}{dx^{k}} L_{n+k}^{k}(x) - (n+k) \frac{d^{k}}{dx^{k}} L_{n+k-1}^{k}(x) \]

And use the relation
\[(4.24) L_{n}^{k}(x) = (-1)^{k} \frac{d^{k}}{dx^{k}} L_{n+k}^{k}(x) \]

We have
\[xL_{n}^{k}(x) + kL_{n}^{k}(x) = (n+k) L_{n}^{k}(x) - (n+k) L_{n-1}^{k}(x) \]

Then we have
\[xL_{n}^{k}(x) = nL_{n}^{k}(x) - (n+k) L_{n-1}^{k}(x). \]

To prove the following relation:
\[(4.33) \text{ (iv)} \quad L_{n}^{k}(x) = - \sum_{r=0}^{n-1} L_{r}^{k}(x) \]

Use the relation (4.21)
\[L_{n}^{k}(x) = - \sum_{r=0}^{n-1} L_{r}^{k}(x) \]

Shift \(n \) by \(n+k \) and differentiate \(k \) times we have
\[
\frac{d^k}{dx^k} L'_{n+k}(x) = -\sum_{r=0}^{n+k-1} \frac{d^k}{dx^k} L_r(x)
\]

Apply the relation (4.24), we have

\[
(-1)^k L'_n(x) = -\sum_{r=k}^{n+k-1} \frac{d^k}{dx^k} L_r(x)
\]

The derivative =0 for \(r < k \):

Put \(r = k + s \) in the R.H.S., we have

\[
(-1)^k L'_n(x) = -\sum_{s=0}^{n-1} \frac{d^k}{dx^k} L_{s+k}(x)
\]

Apply the relation (4.24) again, we have

\[
L'_n(x) = -\sum_{r=0}^{n-1} L_r(x).
\]

To prove the following relation

\[
(4.34) \quad (v) \quad L^k_n(x) = -L^k_{n-1}(x)
\]

From definition of associated Laguerre function and differentiate we have

\[
L^k_n(x) = \frac{d}{dx} \sum_{r=0}^{n} (-1)^r \frac{(n+k)!x^r}{(n-r)!(k+r)!r!}
\]

\[
= \sum_{r=1}^{n} (-1)^r \frac{(n+k)!x^{r-1}}{(n-r)!(k+r)!(r-1)!}
\]

Shift \(r = 1 + s \), we found

\[
L^k_n(x) = \sum_{s=0}^{n-1} (-1)^{1+s} \frac{(n+k)!x^s}{(n-s-1)!(k+s+1)!s!}
\]

We can write the R.H.S. in the form

\[
L^k_n(x) = -\sum_{s=0}^{n-1} (-1)^s \frac{n+1+ (k+1)}{(n-1-s)(k+s+1)!s!} x^s
\]

Use the definition of associated Laguerre function, we have

\[
L^k_n(x) = -L^{k+1}_{n-1}(x)
\]

We have to prove the relation

\[
(4.35) \quad (vi) \quad L^{k+1}_n(x) = \sum_{r=0}^{n} L^k_r(x)
\]

Comparing the relations (4.34),(4.33), we have

\[
\sum_{r=0}^{n-1} L^k_r(x) = L^{k+1}_{n-1}(x)
\]

By shifting \(n \) by \(n+1 \), we have
\[L_n^{k+1}(x) = \sum_{r=0}^{n} L_r^k(x) \]

- **Note that** in some books they define the Laguerre function in the following form
 \[
 \frac{1}{(1-t)} \exp \left\{ -xt \right\} = \sum_{n=0}^{\infty} \ell_n(x) \frac{t^n}{n!}
 \]
 Then Laguerre equation becomes
 \[L_n(x) = \frac{1}{n!} \ell_n(x) \cdot \]

4-7 General examples

Example 1. Prove that

\[(4.36) \int_{t}^{\infty} e^{-x} L_n^k(x) dx = e^{-t} \left[L_n^k(t) - L_n^{k-1}(t) \right] \]

Integrate by parts the L.H.S. we have

\[I = \left[-e^{-t} L_n^k(x) \right]_{t}^{\infty} - \int_{t}^{\infty} (-e^{-x}) L_n^k(x) dx \]

\[= e^{-t} L_n^k(t) + \int_{t}^{\infty} e^{-x} L_n^k(x) dx \]

Use the relation (4.33), we have

\[I = e^{-t} L_n^k(t) - \int_{t}^{\infty} e^{-x} \left(\sum_{r=0}^{n-1} L_r^k(x) \right) dx \]

\[= e^{-t} L_n^k(t) - \sum_{r=0}^{n-1} \int_{t}^{\infty} e^{-x} L_r^k(x) dx \]

Substitute from equation (4.36) in value of I, we have

\[\int_{t}^{\infty} e^{-x} L_n^k(x) dx + \sum_{r=0}^{n-1} \int_{t}^{\infty} e^{-x} L_r^k(x) dx = e^{-t} L_n^k(t) \]

The L.H.S. can be written in the form

\[(*) \sum_{r=0}^{n} \int_{t}^{\infty} e^{-x} L_r^k(x) dx = e^{-t} L_n^k(t) \cdot \]

We can write the relation

\[e^{-x} L_n^k(t) = \sum_{r=0}^{n} e^{-x} L_r^k(x) - \sum_{r=0}^{n-1} e^{-x} L_r^k(x) \]

And integrate w.r.to \(x \)
\[
\int \limits_{t} e^{-x} L_{n}^{k}(x) \, dx = \sum_{r=0}^{n} \int \limits_{t} e^{-x} L_{r}^{k}(x) \, dx - \sum_{r=0}^{n} \int \limits_{t} e^{-x} L_{r}^{k}(x) \, dx
\]

Use the relation (*) we have
\[
\int \limits_{t} e^{-x} L_{n}^{k}(x) \, dx = e^{-t} L_{n}^{k}(t) - e^{-t} L_{n-1}^{k}(t)
\]
\[
= e^{-t} \{ L_{n}^{k}(t) - L_{n-1}^{k}(t) \}.
\]

Example 2. Prove the following relation
\[
(4.37) \quad L_{n}^{\alpha, \beta+1}(x + y) = \sum_{r=0}^{n} L_{r}^{(\alpha)}(x)L_{n-r}^{\beta}(y).
\]

Proof. Use the definition of associated Laguerre function
\[
\frac{1}{(1-t)^{k+1}} \exp \left\{ -\frac{xt}{(1-t)} \right\} = \sum_{n=0}^{\infty} t^{n} L_{n}^{k}(x)
\]
Take the form
\[
\sum_{n=0}^{\infty} L_{n}^{\alpha, \beta+1}(x + y)t^{n} = \frac{\exp \left\{ -(x+y)t/(1-t) \right\}}{(1-t)^{\alpha+\beta+2}}
\]
Then \(L_{n}^{\alpha, \beta+1}(x + y) \) is coeff. of \(t^{n} \) in the expansion
\[
\frac{\exp \left\{ -(x+y)t/(1-t) \right\}}{(1-t)^{\alpha+\beta+2}}
\]
This expansion can be written in the form
\[
\frac{\exp \left\{ -(x+y)t/(1-t) \right\}}{(1-t)^{\alpha+\beta+2}} = \frac{\exp \left\{ -xt/(1-t) \right\} \exp \left\{ -yt/(1-t) \right\}}{(1-t)^{\alpha+1}} \frac{\exp \left\{ -yt/(1-t) \right\}}{(1-t)^{\beta+1}}
\]
\[
= \sum_{r=0}^{\infty} L_{r}^{\alpha}(x)t^{r} \sum_{s=0}^{\infty} L_{s}^{\beta}(y)t^{s}
\]
\[
= \sum_{r,s=0}^{\infty} L_{r}^{\alpha}(x) \cdot L_{s}^{\beta}(y)t^{r+s}
\]
To have coeff. of \(t^{n} \), put \(r + s = n \) where \(r \leq n \), we have
\[
t^{n} \text{ معامل } = \sum_{r=0}^{n} L_{r}^{\alpha}(x) \cdot L_{n-r}^{\beta}(y)
\]
Which complete the proof.

Example 3. Prove the following relation
\[
(4.38) \quad J_{m} \left\{ 2\sqrt{xt} \right\} = e^{-t} (xt)^{\frac{m}{2}} \sum_{n=0}^{\infty} L_{n}^{m}(x)t^{n} / (n+m)!
\]
Where \(J_{m}(y) \) is Bessel’s function of the first kind and order \(m \).

Solution. From Bessel’s function, we have
Multiply equation (4.39) in $e^{\prime}(xt)^{-\frac{1}{2}}$, we have
\[
e^{\prime}(xt)^{-\frac{1}{2}} J_m\left\{2\sqrt{xt}\right\} = e^{\prime}(xt)^{-\frac{1}{2}} \sum_{r=0}^{\infty} (-1)^r \frac{1}{r!(m+r)!} \{xt\}^{r+\frac{1}{2}}
= e^{\prime} \sum_{r=0}^{\infty} (-1)^r \frac{1}{r!(m+r)!} \{xt\}^{r}
= \sum_{s=0}^{\infty} \sum_{r=0}^{\infty} (-1)^r \frac{1}{r!(m+r)!} x^r t^r
\]
Then we get the relation
\[
e^{\prime}(xt)^{-\frac{1}{2}} J_m\left\{2\sqrt{xt}\right\} = \sum_{r,s=0}^{\infty} (-1)^r \frac{x^r t^{r+s}}{r!(m+r)!s!}
\]
To find the R.H.S. in power t^n take $s + r = n$ with condition $r \leq n$, we have
\[
e^{\prime}(xt)^{-\frac{1}{2}} J_m\left\{2\sqrt{xt}\right\} = \sum_{r=0}^{\infty} (-1)^r \frac{x^r t^n}{r!(m+r)!(n-r)!}
= \sum_{r=0}^{\infty} (-1)^r \frac{(n+m)! x^r t^n}{(n+m)! r!(m+r)!(n-r)!}
= \frac{1}{(n+m)!} L^m_n(x).
\]

General exercises on Laguerre function

1. **Find** L_4 and prove that it satisfies Laguerre differential equation at $n = 4$.
2. **Express the following functions**

 (i) $f(x) = 7$
 (ii) $f(x) = x$
 (iii) $f(x) = x^3 - 3x^2 + 2x$

 In Laguerre polynomials.
3. **Find** the general solution of Laguerre equation in the following cases:

 (i) $n = 0$
 (ii) $n = 1$
 (iii) $n = 2$
4. **Prove that**

 $L''_n(0) = \frac{1}{2} n(n-1)$

 And then calculate $L^{(4)}_n(0)$, $L^{(3)}_n(0)$.
5. **Prove the following relations**:
(a) \[\int_0^\infty e^{-x^k} L_n(x) \, dx = \begin{cases} 0 & k < n \\ (-1)^n n! & k = n \end{cases} \]

(b) \[\int_0^\infty (x-t)^m L_n(t) \, dt = \frac{m!n!}{(m+n+1)!} x^{m+1} L_n^{m+1}(x) \]

(c) \[L_n^k(x) = (-1)^n \frac{2^{2k} k!(n+k)!}{\pi(2k)!(2n)!} \int_1^\infty (1-t^2)^{k-1/2} H_{2n}(\sqrt{x}) \, dt \]

(d) \[n! \frac{d^m}{dx^m} \{e^{-x^k} L_n^k(x)\} = (m+n)! e^{-x^k} L_{m+n}^{k-m}(x) \]

(e) \[\int_0^\infty e^{-x^k} \{L_n^k(x)\}^2 \, dx = \frac{(n+k)!}{n!} (2n+k+1) \cdot \]

6- **Prove the following relations:**

(a) \[L_n^+(x) = (-1)^n \frac{1}{2^{2n+1} n! x} H_{2n+1}(\sqrt{x}) \]

(b) \[L_n^-(x) = (-1)^n \frac{1}{2^{2n} n!} H_{2n}(\sqrt{x}) \cdot \]