Synthesis of SnO$_2$ Nanowires their Structural and H$_2$ Gas Sensing Properties

E.M. El-Maghraby a,*, Ahsanulhaq Qurashi b,*, Toshinari. Yamazaki c

a Physics Department, Faculty of Science at Damanhour, Alexandria University, Damanhour 136, Egypt
Email: maghrabym@yahoo.com

b Center of Excellence in Nanotechnology and Chemistry Department King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
Email: ahsanulhaq06@gmail.com

c Graduate School of Science and Technology, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan

Abstract

SnO$_2$ nanowires were prepared on bare oxidized silicon, Au and SnO$_2$ coated substrates by thermal evaporation of tin grains in argon atmosphere at 900°C. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) were used to characterize the SnO$_2$ nanowires. FE-SEM images indicated that the size of SnO$_2$ nanowires depend on the type of substrate. Gas sensor was fabricated by dispersing SnO$_2$ nanowires on an interdigitated Pt-electrode. H$_2$ gas sensing properties of these sensors made of nanowires prepared on three different substrates were measured at various operating temperatures and concentrations respectively. SnO$_2$ nanowires deposited on Au-coated substrates showed the highest sensitivity of 11.5 at 100°C upon exposure to H$_2$ gas of 1000 ppm.
Keywords: SnO2; Nanowires; Gas sensor; Hydrogen

Published in: Ceramics International

References