The jasmonate pathway mediates salt tolerance in Grapevines

Ahmed Ismail1,2,*, Michael Riemann1 and Peter Nick1

1 Molecular Cell Biology, Botanical Institute 1, Karlsruhe Institute of Technology, Kaiserstr. 2, D-76128 Karlsruhe, Germany

2 Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt

* To whom correspondence should be addressed. E-mail: ahmed.ismail@bio.uni-karlsruhe.de

Received 27 September 2011; Revised 18 November 2011; Accepted 1 December 2011

Abstract

Salt stress is a major constraint for many crop plants, such as the moderately salt-sensitive economically important fruit crop grapevine. Plants have evolved different strategies for protection against salinity and drought. Jasmonate signalling is a central element of both biotic and abiotic stress responses. To discriminate stress quality, there must be cross-talk with parallel signal chains. Using two grapevine cell lines differing in salt tolerance, the response of jasmonate ZIM/tify-domain (JAZ/TIFY) proteins (negative regulators of jasmonate signalling), a marker for salt adaptation Na+/H+ EXCHANGER (NHX1), and markers for biotic defence STILBENE SYNTHASE (StSy) and RESVERATROL SYNTHASE (RS) were analysed. It is shown that salt stress signalling shares several events with biotic defence including activity of a gadolinium-sensitive calcium influx channel (monitored by apoplastic
alkalinization) and transient induction of JAZ/TIFY transcripts. Exogenous jasmonate can rescue growth in the saltsensitive cell line. Suppression of jasmonate signalling by phenidone or aspirin blocks the induction of JAZ/TIFY transcripts. The rapid induction of RS and StSy characteristic for biotic defence in grapevine is strongly delayed in response to salt stress. In the salt-tolerant line, NHX1 is induced and the formation of reactive oxygen species, monitored as stress markers in the sensitive cell line, is suppressed. The data are discussed in terms of a model where salt stress signalling acts as a default pathway whose readout is modulated by a parallel signal chain triggered by biotic factors downstream of jasmonate signalling.

Key words: Grapevine (V. rupestris, V. riparia), Harpin, jasmonic acid, JAZ/TIFY, salt stress.

Published in: Journal of Experimental Botany, Vol. 63, No. 5, pp. 2127–2139, 201

References
Avanci NC, Luche DD, Goldman GH, Goldman MHS. 2010. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research 9, 484–505.
Bruinsma M, van Broekhoven S, Poelman EH, Posthumus MA, Mü ller MJ, van Loon JJA, Dicke M. 2010a. Inhibition of
lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia 162, 393–404.

Grunewald W, Vanholme B, Pauwels L, Plovie E, Inze D,

Nicholas KB, Nicholas HBJ. 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the authors.

Staswick PE, Tiryaki I. 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. The Plant Cell 16, 2117–2127.
The jasmonate pathway mediates salt tolerance in grapevines | 2139 Downloaded from http://jxb.oxfordjournals.org/ by guest on February 26, 2013