

Damanhour University Faculty of Science



# **Course Specification**

**University/Academy: Damanhour University** 

**Faculty/Institute: Faculty of Science** 

**Department: Chemistry** 

| 1. Course Data:       | 1. Course Data:                                                   |                                  |                                                       |              |          |                       |
|-----------------------|-------------------------------------------------------------------|----------------------------------|-------------------------------------------------------|--------------|----------|-----------------------|
| Course code:          |                                                                   | Course                           | title:                                                |              |          | Academic year/level:  |
| Chem. 323             |                                                                   | Inorganic                        | and phy                                               | sical Chemis | stry (2) | 3rd year / 1st term   |
|                       |                                                                   |                                  |                                                       |              |          | 2009/2010             |
| Specialization:       |                                                                   | No of instructional vuitae       |                                                       |              |          |                       |
| Zoology and Chemistry |                                                                   | No. of instructional units:      |                                                       |              |          |                       |
|                       |                                                                   | lecture                          | 4hrs                                                  | tutorial     | 1        | practical -           |
|                       |                                                                   |                                  |                                                       |              |          |                       |
| course Aim            | • This course is aimed to give a solid foundation in the areas of |                                  |                                                       |              |          |                       |
|                       | inorganic and physical chemistry. It provides the students with a |                                  |                                                       |              |          |                       |
|                       | thorough understanding of the chemistry of d- and f-block         |                                  |                                                       |              |          |                       |
|                       | elements and covers the basic concepts in coordination            |                                  |                                                       |              |          |                       |
|                       | chemistry. It also provides a broad background of molecular       |                                  |                                                       |              |          |                       |
|                       | kinetic theory of gases.                                          |                                  |                                                       |              |          |                       |
| 2 Intended lea        |                                                                   |                                  |                                                       |              |          |                       |
|                       | 2. Intended learning outcome                                      |                                  |                                                       |              |          |                       |
| Knowledge and         | At the end of this course the students will be able to:           |                                  |                                                       |              |          |                       |
| understanding         | a1: show the main aspects of the chemistry of Transition          |                                  |                                                       |              |          |                       |
|                       | elements (d- block and lanthanides).                              |                                  |                                                       |              |          |                       |
| a2: draw the key feat |                                                                   | tures of coordination compounds. |                                                       |              |          |                       |
|                       | а                                                                 | 3: write                         | the bas                                               | sic knowle   | dge of   | the Molecular Kinetic |
|                       |                                                                   | Theor                            | y of gas                                              | ses.         |          |                       |
| Intellectual skills   | Intellectual skills                                               |                                  | By the end of the course, students should be able to: |              |          |                       |
|                       | •b1: use knowledge and understanding of essential facts,          |                                  |                                                       |              |          |                       |



#### Damanhour University Faculty of Science



|                     | concepts, principles and theories relating to course            |  |  |  |  |
|---------------------|-----------------------------------------------------------------|--|--|--|--|
|                     | problems.                                                       |  |  |  |  |
|                     | • b2: Analyze novel problems and make Strategies for their      |  |  |  |  |
|                     | solution                                                        |  |  |  |  |
| Professional skills | • At the end of this course students will have the ability to:  |  |  |  |  |
|                     | •c1: perform problems related to the course content.            |  |  |  |  |
| a) General skills   | • At the end of this course students will have the ability to:  |  |  |  |  |
|                     | • d1: communicate in group,                                     |  |  |  |  |
|                     | • d2: formulate information and communication technology.       |  |  |  |  |
| course content      | • Chemistry of Transition element and coordination              |  |  |  |  |
|                     | Chemistry                                                       |  |  |  |  |
|                     | • Introduction to transition metal chemistry, Physical and      |  |  |  |  |
|                     | Formation of metal complexes Physical and Formation of          |  |  |  |  |
|                     | metal complexes (Electronic structure of transition             |  |  |  |  |
|                     | metalschemical properties, Variable oxidation state, Colour     |  |  |  |  |
|                     | and magnetic properties                                         |  |  |  |  |
|                     | ● -Formation of interstitial and non stoichiometric             |  |  |  |  |
|                     | compounds, Occurrence, extraction and uses)Theories of          |  |  |  |  |
|                     | bonding in metal complexes The valence bond theory,             |  |  |  |  |
|                     | • -The electrostatic crystal field theory The molecular orbital |  |  |  |  |
|                     | theory                                                          |  |  |  |  |
|                     | • Electronic spectra of transition metal complexes              |  |  |  |  |
|                     | • -Thermodynamic stability of metal complexes                   |  |  |  |  |
|                     | <ul> <li>Molecular kinetic theory of gases</li> </ul>           |  |  |  |  |
|                     | • - Introduction,                                               |  |  |  |  |
|                     | • Translational kinetic energy and temperature                  |  |  |  |  |



#### Damanhour University Faculty of Science



|                   | • - Principle of equipartition of energy Degrees of freedom |  |  |  |
|-------------------|-------------------------------------------------------------|--|--|--|
|                   | and heat capacities of gases                                |  |  |  |
|                   | • -Distribution of molecular velocities Root mean square    |  |  |  |
|                   | velocity, average velocity, and most probable velocities    |  |  |  |
|                   | • Frequency of collision. Mean free path                    |  |  |  |
|                   | • Collision diameters.                                      |  |  |  |
|                   | • Viscosity of gases                                        |  |  |  |
|                   | • Thermal conductivity of gases.                            |  |  |  |
|                   | • Diffusion. Behaviour of real gases.                       |  |  |  |
|                   | • Compressibility and its uses                              |  |  |  |
|                   | <ul> <li>Principle of continuity of state</li> </ul>        |  |  |  |
|                   | <ul> <li>Principle of corresponding state</li> </ul>        |  |  |  |
| Teaching and      | • Lecture                                                   |  |  |  |
| learning methods  | • Contact hours                                             |  |  |  |
|                   | Problem-Based Learning                                      |  |  |  |
|                   | • Encourage students to use online and library resources    |  |  |  |
| Taching and       | • Computer hall to be used in visual labs and simulation    |  |  |  |
| learning methods  | experiments.                                                |  |  |  |
| for students with | • Data show, overhead projector, Molecular models and       |  |  |  |
| special needs     | chemistry computer programs.                                |  |  |  |
|                   | • Changing to credit hours system, it is more effective.    |  |  |  |
| Student           | • Final-Term Examination to assess the student skill in     |  |  |  |
| Assessment        | presenting facts, applications, theories and calculations.  |  |  |  |
| Procedures used:  | •                                                           |  |  |  |
| Schedule:         | • Assessment 1: Final-Term Examination Week16               |  |  |  |



#### Damanhour University Faculty of Science



| Weighing of       | • Mid-Term Examination:                                       |  |  |  |  |
|-------------------|---------------------------------------------------------------|--|--|--|--|
| Assessment:       | • Final-Term Examination: 200                                 |  |  |  |  |
|                   | • Oral Examination:                                           |  |  |  |  |
|                   | • Practical Examination:                                      |  |  |  |  |
|                   | • Semester Work: -                                            |  |  |  |  |
|                   | ◆ Total: 200                                                  |  |  |  |  |
| List of Textbooks | • J. D. Lee, Concise Inorganic Chemistry,4th ed., Chapman     |  |  |  |  |
| and References:   | and Hall, London, New York, (1991).                           |  |  |  |  |
|                   | • J. E. Huheey, E. A. Keiter and R. L. Kieter, Inorganic      |  |  |  |  |
|                   | Chemistry: Principles and Reactivity. 4th ed. Harper          |  |  |  |  |
|                   | Collins College Publishers (1993).                            |  |  |  |  |
|                   | • Physical chemistry , Thomas engel and Philip Reid New       |  |  |  |  |
|                   | York (2005)                                                   |  |  |  |  |
|                   | • Physical chemistry, Gordon. Barrdu Yew York (1998)          |  |  |  |  |
| Course Notes      | • Lecture notes of physical chemistry for 3rd year students - |  |  |  |  |
|                   | faculty of science - Damanhour - Alexandria University.       |  |  |  |  |
| Required Books    | ●F. A. Cotton and G. Wilkinson, Advanced Inorganic            |  |  |  |  |
| (Textbooks)       | Chemistry, 5th ed, Wiley, Chichester (1988).                  |  |  |  |  |
|                   | • Physical chemistry Horia Metiu , Statistical mechanic New   |  |  |  |  |
|                   | York (2004)                                                   |  |  |  |  |
| Recommended       | ● F. A. Cotton and G. Wilkinson, Advanced Inorganic           |  |  |  |  |
| Books             | Chemistry, 5th ed, Wiley, Chichester (1988).                  |  |  |  |  |
|                   | • Physical chemistry Horia Metiu , Statistical mechanic New   |  |  |  |  |
|                   | York (2004)                                                   |  |  |  |  |
| Periodicals, web  | www.science.uwaterloo.ca/~cchieh/cact/                        |  |  |  |  |
|                   |                                                               |  |  |  |  |



#### Damanhour University Faculty of Science



sites,...,etc

applychem/coordcpd.html
http://chemistry.semo.edu/crawford/ch186/
lectures/ch20/index.html

Course Instructor

Dr. Alaa El-Deen Ali

Date: 20/9/2008

Head of Department
Dr. Medhat A. Shaker