Course specification

University/Academy: Damanhour
Faculty/Institute: Science
Department: Physics

<table>
<thead>
<tr>
<th>1. course Data:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code:</td>
<td>Course title:</td>
</tr>
<tr>
<td>PHY (307)</td>
<td>Electronic optics</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialization:</td>
<td>No. of instructional units:</td>
</tr>
<tr>
<td>Special physics</td>
<td></td>
</tr>
</tbody>
</table>

| 2. course Aim | | |
|----------------|----------------|
| • The course introduces the students to the principles of electron emission, motion in electromagnetic field. | |
| • Know the construction of electric and magnetic lenses and electron microscope. | |

<table>
<thead>
<tr>
<th>3. Intended learning outcome</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Knowledge and understanding</td>
<td>A1: Developing and understanding the applications of electron motion in E.M. field namely construction of electronic lenses and electron microscope.</td>
</tr>
<tr>
<td></td>
<td>A2: Recognize the difference between electronic lenses and optical lenses.</td>
</tr>
</tbody>
</table>
| b) Intellectual skills | B1: Analyze scientific problems logically.
| | B2: Compare between electronic lenses and optical lenses.
| | B3: Apply the laws governing the electron optics.
| c) Professional skills | C1: Use the physical knowledge to analyze a suitable technique to solve problems.
| | C2: Solve some physical problems helping in understanding the course parts.
| d) General skills | D1: **IT skills**: use the internet/electronic resources to obtain subject specific information, use a number of computer packages to present information.
| | D2: **Working with others**: work with other as a part of a team to collect data and/or to produce reports and presentations.
| | D3: **Self-learning**: study independently, set realistic targets and plan work and time to meet targets within deadlines.
| | D4: **Problem solving**: Regular problem exercises and example will give students the chance to develop their theoretical understanding and problem.
| | D5: **Communication**: Students will have write reports and give oral presentations.
| 4. course content | - Introduction to electron optics.
| | - Motion of electrons in uniform: electrostatic and magnetic fields.
| | - Electromagnetic waves in free space.
| | - Physical similarity of light and electron lenses.
| | - Types of electron microscope and applications.

| 5. Teacing and learning methods | 5.1. Teaching will be by lectures, exercises.
5.2. All learning outcomes are delivered through lectures.
5.3. All lectures and worked examples are given from the lecturer private notes.
Instructional Methods include:
- Direct Instruction: lecture, reading, in class research, problem sets, presentations, and guest speakers
- Instructional Materials: textbook; primary and secondary materials, experts from the field, and electronic media
- Team Teaching which will include business, university, and community based partners
- Community based applied concept projects
- Self-directed, cooperative, and collaborative learning projects
- Student oral presentations |
| 6. Teaching and learning methods for students with special needs | 1- Over head projector
2- appropriate teaching accommodation and Computers
3- Laboratory with computer terminal. |
| 7. Student Assessment | 7-1. Semester Work.
7-2. Mid-Term Examination.
7-3. Practical Examination
7-4. Final Term Examination |
Quality Assurance Project
Damanhour University
Faculty of Science

a) Procedures used:

1. Research and presentation to assess skills of presenting data and discussion.
2. Mid-Term Examination To accesses ability to **continue in course**
3. Practical exam. To access professional and practical skills.
4. Written exam. To accesses ability to remember and understand scientific background.

b) Schedule:

- Assessment 1: Semesterwork Week: 4-8
- Assessment 2: Mid-term Week: 10
- Assessment 3: Practical final Week: 12
- Assessment 4: Written final Week: 14

c) Weighing of Assessment:

- Mid-Term Examination: 10
- Final-Term Examination: 100
- Practical Examination: 30
- Semester Work: 10

Total: 150

8. List of Textbooks and References:

a) Course Notes

- Lecturer private notes
b) Required Books
Textbooks

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

c) Recommended Books

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

d) Periodicals, web sites, etc

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Instructor: Dr. El Maghrby Mohamed El Maghrby

Head of Department

Date: -----/-----/-----

Prof. Dr. El. M. Elmaghrby