Pyrethroids Toxicity, And Selectivity To Microplitis rufiventris (Kok.) And Its Prey Spodoptera littoralis (Laboratory And Field Strains) By

M.A. Abbassy; A. H. Belal, A. M. Marei* and A. K. Nassar
Pesticide Chemistry Department, Faculty of Agriculture, Alexandria University, Damanhour,

Egypt.

* Pesticide Chemistry Department, Faculty of Agriculture, Alexandria University, Egypt.

ABSTRACT

The toxicity of λ-cyhalothrin, cypermethrin, deltamethrin and fenvalerate, was tested against, Spodoptera littoralis (Boisd.) larvae (laboratory and field strains) with and without the endoparasitoid. Microplitis rufiventris (KOK.). Results revealed that cypermethrin was the most toxic insecticide and fenvalerate was the least toxic one against the laboratory strain larvae. The parasitized larvae were more susceptible to the tested pyrethroids than unparasitized larvae. Also, λ cyhalothrin was the most toxic compound followed by fenvalerate, cypermethrin and deltamethrin to the larvae of the field strain of, S. littoralis. The toxicity of the tested pyrethroids against field parasitized larvae was slightly greater than that of unparasitized larvae. The rank for the insecticide toxicity for the parasitoid was the same as that for its prey, except for the fact that cypermethrin was less toxic than deltamethrin and λ-cyhalothrin to the parasitoid. According to selectivity ratios at LC50 and LC95 levels, cypermethrin and fenvalerate are positively selective pyrethroids, which have a minimum effect on the cotton leafworm parasitoid, M. rufiventris. The susceptibility of S. littoralis larvae of El-Beheira field strain to the tested pyrethroids showed that the larvae of the field strain were very resistant to the tested pyrethroids. Mean of resistance ratios for parasitized and unparasitized larvae were 380.08, 731.59, 555.65 and 297.11 fold resistance to λ-cyhalothrin, cypermethrin, deltamethrin and fenvalerate, respectively. The specific activity of ATPase and CaE enzymes of microsomal and soluble fractions of S. littoralis larvae of laboratory and field strains and the parasitoid, M. rufiventris was determined. Results revealed that the activity of the ATPase was significantly higher in the larvae of the laboratory strain than in both, field strain larvae and the parasitoid, M. rufiventris. CaE specific activity results show that larvae of the field strain demonstrated 3 and 3.8 times the CaE specific activity as larvae of laboratory strain and the adults of M. rufiventris.

INTRODUCTION

The cotton leafworm, Spodoptera littoralis (Boisd.) is a polyphagous pest important in many crops and a potential prey for M. rufiventris in Egypt. Many efforts have been made to control this pest mechanically, biologically and chemically using insecticides including pyrethroid insecticides (Abdalla, 1982; Riskallah et al., 1983; Radwan et al., 1984; El-Ghareeb, 1987; Yousef et al., 1989 and Abo-El-Saad et al., 1998). Resistance to insecticides in insects may result from a lower cuticular penetration, from a modification of toxic action, or from an increase in the activity of the biotransformation enzymes (Riskallah et al., 1983; El-Ghareeb and Manna, 1989; Pinchard and Vassal, 1991; Yu, 1991 and 1992; Moustafa et al., 1992; Sauphanor et al., 1997; and Abo-El-Saad et al., 1998). There are great numbers of parasites that attack the larvae of the cotton leafworm, Microplitis rufiventris Kok. is a solitary endoparasitoid which oviposits and develops in the larvae of S. littoralis as well as many noctuidae caterpillars. A major problem that retard the development of M. rufiventris is the increasing usage of insecticides for the control of cotton and other crops (Elliot et al., 1983; Hegazi et al., 1985; Powell et al., 1986; Shukla et al., 1988; Bhushan and Azam, 1990; Zanuncio et al., 1993; Batalha et al., 1995 and 1997; and Kares et al., 1998). The parasitism by various parasitoids have great effect on the susceptibility of the insect host to insecticides (Hegazi et al., 1982; and Mani and Krishnamoorthy, 1984). Also, the selectivity of insecticides is of major importance in the process of conserving the biodiversity in the ecosystem (Singh et al., 1983; Hower and Davis, 1988; Shukla et al., 1988; Batalha et al., 1995 and 1997; Suinga et al., 1996; and Zanuncio et al., 1998).

Therefore, the purpose of this study was to investigate the pyrethroids toxicity, selectivity and mechanism of resistance in *S. littoralis* (laboratory and field strains) and its parasitoid, *Microplitis rufiventris* to select the most appropriate pyrethroid for control of cotton leafworm without any effect on its parasitoid.

MATERIALS AND METHODS

Tested Insecticides:

Four synthetic pyrethroids were used: Lambda-Cyhalothrin (Icon, 2.5% EC) (S) - α - cyano-3 - phenoxybenzyl (Z)- (1R, 3R)-3 - (2-chloro-3, 3, 3- trifluoropropenyl) - 2, 2- dimethyl cyclopropane carboxylate.

Cypermethrin (Sparkil, 25% EC) (RS) - α- cyano- 3-phenoxybenzyl (1RS, 3RS; 1RS, 3SR) - 3- (2, 2- dichlorovinyl) -2, 2-dimethyl cyclopropane carboxylate.

Deltamethrin (K-Othrin, 2.5% WP) (S)— α- cyano— 3-phenoxybenzyl (1R, 3R)— 3- (2, 2- dibromovinyl)— 2, 2- dimethyl cyclopropane carboxylate.

Fenvalerate (Somi-Alpha, 5% EC) (RS)— α- cyano— 3-phenoxybenzyl (RS)— 2- (4-chlorophenyl)— 3- methyl butyrate.

Tested organisms:

Susceptible and Field strains of Spodoptera littoralis (Boisd.):

The original stock culture of susceptible cotton leafworm strain, Spodoptera littoralis (Boisd.) was obtained from Entomology Department, Faculty of Agriculture, Alexandria University. Field strain of the same insect was collected from El-Beheira Governorate. The strains were reared in the laboratory on castor oil leaves under the temperature of 25°C±2 and relative humidity of 60-70% according to Eldefrawi et al., (1964) rearing technique. The 4th instar larvae were used for the bioassay tests.

Laboratory culture of the parasitoid Microplitis rufiventris (Kok.):

The first generation of *Microplitis rufiventris* (Kok.) was supplied from Entomology Department, Faculty of Agriculture, Alexandria University. The parasitoid was reared using the technique of Hegazi and El-Minshawy (1979) with some modification.

Parasitism:

Using an aspirator, fertilized adult females were sucked from rearing vials, and introduced into plastic container containing approximately 200 second instar larvae of *S. littoralis*. The larvae were exposed to the parasitoid for three hours to ensure that parasitism took place. After the parasitism, parasitoid females were removed and the parasitized larvae of *S. littoralis* were transferred to clean plastic cups (10X12cm) and provided as usual with fresh and clean castorbean leaves. The contents of the plastic cups were examined daily to

remove the unparasitized larvae whenever found. Otherwise they were likely to attack the parasitized ones, as soon as the last instar larvae of the parasitoid emerged from the host larvae they pupated inside a cocoon and they were collected into new vial.

EXPRIMENTAL METHODS:

Toxicity of tested pyrethroids to unparasitized larvae:

The 4th instar of unparasitized larvae of the Egyptian cotton leafworm *S. littoralis* was treated by topical application method using micro applicator. One µliter of pure acetone solution or dilution of each insecticide concentration was applied to the thoracic terga of the larva as described by Metcalf (1958). Three replicates, each of ten fourth-instar larvae, were used for each insecticide concentration. The control replicates were treated with acetone without any toxicant. After treatment the larvae were placed in glass cups (6X12 cm) provided with a fresh food of castor bean leaves. The cups were covered with cotton textile and kept for 24 hours at room temperature.

Toxicity of tested pyrethroids to parasitized larvae:

The larvae of the cotton leafworm at the end of their 2nd instar were subjected to *Microplitis rufiventris* parasite. After five days the parasitized larvae (5-day-parasitism-old) were used as test organisms. Three replicates, each of 10 larvae, were treated by topical application method using micro applicator. 1µl of pure acetone solution of each insecticide concentrations was topically applied to the thoracic terga of each larva as described by Metcalf (1958). The control replicates were treated with acetone without any toxicant. The larvae were placed in glass cups (6X12 cm), provided with a fresh food of castor bean leaves and cups covered with cotton textile and kept for 24hours at room temperature.

Toxicity of pyrethroid insecticides to S. littoralis by residual film method:

The toxicity of tested pyrethroids to the 4^{th} instar larvae of the Egyptian cotton leafworm, S. littoralis laboratory strain was evaluated using residual film method. Different concentrations of each insecticide were prepared using absolute acetone as solvent and then, the dilution of each insecticide concentration was placed petri dish (Φ 10cm) as thin film and lifted under laboratory conditions until the solution or dilution was air-dried. Each petri dish received 10 larvae and replicated three times. The control was treated with acetone

without any toxicant. The larvae were provided with fresh food of castor oil leaves at room temperature. The mortality percentages were recorded 24 hours after exposure.

Toxicity of tested pyrethroids to the adults of Microplitis rufiventris (Kok.):

The toxicity of each tested insecticide against the adults of *M. rufiventris* was evaluated. Ten 3-days old adult males were introduced to a glass vial (13X3 cm in diameter) in which the inner surface was pretreated with a thin film of each insecticide concentrations. The vials were covered with cotton textile and provided with a droplet of bee honey on the cotton textile and kept for 24 hours at room temperature. Each treatment was replicated three times.

In each bioassay test, mortality counts in each treatment were recorded after 24 hours from application. Mortality percentages were corrected by Abbott's formula (1925). Results were statistically analyzed according to the method of Finney (1971).

Assessment of adenosine triphosphatase (ATPase) specific activity:

The method was based on the spectrophotometric determination of the inorganic phosphate (Pi) liberated from the hydrolysis reaction of the ATP mediated by the enzyme according to the method of Koch (1968).

Determination of carboxylesterase (CaE) specific activity:

The activity of carboxylesterase was measured by spectrophotometer based on the determination of p-nitrophenol produced from the hydrolysis reaction of p-nitrophenyl butyrate with the enzyme. Activity measurement was carried out according to the method reported by Vershoyle et al., (1982).

Determination of protein content:

Protein content was estimated using the method reported by Lowery et al., (1951).

In vivo effect of tested pyrethroids on ATPase specific activity of microsomal and soluble fractions of S. littoralis head capsules:

The 4th instar larvae of the Egyptian cotton leafworm were topically applied with doses equal to the value of the LD₅₀ of each tested pyrethroid. After 24 hours, head capsules of the surviving

larvae were separated and homogenized in 10 folds (w/v) of an ice cold buffer containing sucrose (0.32M), EDTA (1mM) and tris-HCL (10mM), pH 7.5. The homogenate was filtered through a double layer of cheesecloth. The filtrate was subjected to centrifugation at 10,000 rpm for 20 minutes at 4°C. The supernatant was used as a source of ATPase enzyme to determine its specific activity.

In vivo effect of tested pyrethroids on Carboxylesterase (CaE) specific activity of S. littoralis:

The surviving larvae of the 4th instar larvae of the Egyptian cotton leafworm which were treated topically with doses equal to the value of the LD₅₀ value of the tested pyrethroids; were used after 24 hours of treatment. Midguts were collected by exposing the alimentary canal and sectioning it first slightly posterior to the cardiac sphincter and second slightly anterior to the pyloric sphincter. A slight pressure was followed at one end of the excised midgut contents. Midguts was rinsed and homogenized in 10 folds (w/v) of an ice-cold phosphate buffer (0.1M, pH 7.4). The homogenate was subjected to centrifugation at 10,000 rpm for 20 minutes at 4°C and the supernatant was used as a source of carboxylesterase enzyme.

In vivo effects of tested pyrethroids on ATPase and CaE enzymes specific activity of Microplitis rufiventris

Male adults of the solitary endoparasitoid *M.* rufiventris were placed into a glass vials in which the inner surface was pretreated with doses equal to the value of the LC₅₀ of the tested pyrethroids as a thin film. After 24 hours the surviving insects were homogenized in 10 folds (w/v) of an ice-cold Tris-HCl-EDTA-Sucrose buffer pH 7.5. The homogenate was subjected to centrifugation at 10,000 rpm for 20 minutes at 4°C. The supernatant was used as a source for ATPase and CaE determinations. In each enzyme determination, protein content was measured using the method reported by Lowery *et al.*, (1951).

RESULTS AND DISCUSSION

Toxicity of pyrethroids to parasitized and non-parasitized larvae of susceptible and field strains of the Egyptian cotton leafworm:

Four pyrethroid insecticides, λ -cyhalothrin, cypermethrin, deltamethrin, and fenvalerate were topically tested against the 4th instar larvae of the laboratory (susceptible) and El-Beheira field strains of, *S. littoralis* with or without the endoparasitoid, *M.*

rufiventris. Concerning laboratory strain, results in Table (1) revealed that cypermethrin was the most toxic insecticide followed by deltamethrin, fenvalerate and λ-cyhalothrin with LD₅₀ values of 0.029, 0.038, 0.041 and 0.042 µg/ unparasitized larva, respectively. Concerning, parasitized larvae, results indicate that cypermethrin was the most toxic compound followed by λ -cyhalothrin, deltamethrin and fenvalerate with LD₅₀ of 0.01, 0.015, 0.02, and 0.035 μg/ larva, respectively. The ranking order of toxicity was identical for both unparasitized and parasitized larvae except for λ-cyhalothrin and deltamethrin where exchanged their position. In general, these results revealed that parasitized larvae of S. littoralis were more susceptible to the tested pyrethroids than unparasitized larvae. In these concerns. Hegazi et al., (1982) mentioned that the parasitized larvae of the cotton leafworm were highly susceptible to any residues of tamaron. Thus, the presence of parasitized larvae decreased the amounts of insecticides needed to control the pest and subsequently diminish to certain extent the contamination risks of the environment.

Among the tested pyrethroids, cypermethrin was the most toxic insecticide followed by deltamethrin, fenvalerate and λ -cyhalothrin. The four pyrethroids contain the same alcohol moiety (α -cyano -3-phenoxybenzyl), but substitution of 3- (2,2- dihalovinyl)- 2,2-dimethyl cyclopropane carboxylic in structure of cypermethrin and deltamethrin by 2- (4- substituted phenyl)- 3- methylbutyric gives fenvalerate, and by 3- (2- chloro -2- trifluoro methyl vinyl)- 2,2-dimethyl cyclopropane carboxylic gives λ -cyhalothrin, which was less toxic than cypermethrin and deltamethrin. The above mentioned substitution may affect the intrinsic toxicity to the target system and/or induced sensitivity of the structure to the metabolic systems in the cotton leafworm larvae.

Concerning, El-Beheira field strain, results in Table (2) indicate that λ -cyhalothrin was the most toxic pyrethroid followed by fenvalerate, cypermethrin and deltamethrin with LD50 values of 9.43, 12.19, 12.6, and 17.58 µg/unparasitized larva, respectively. Against the parasitized larvae, the toxicity of the tested pyrethroids was slightly greater than that for unparasitized larvae. The ranking order of toxicity was identical for both unparasitized and parasitized larvae except cypermethrin and fenvalerate where they exchanged their position.

Insecticide selectivity to *Microplitis rufiventris* (Kok.) and its host *Spodoptera littoralis* (Boisd.):

The selectivity of the four pyrethroid insecticides to the cotton leafworm and its parasitoid, M. rufiventris was evaluated using sprayresidue film technique. Based on the LC₅₀ values, fenvalerate showed the lowest toxicity to the cotton leafworm followed by deltamethrin, λ -cyhalothrin, and cypermethrin as shown in Table (3). The rank for the insecticides toxicity for the parasite was the same as that for its host based on estimated LC₅₀ values. These values ranged from 26.12 to 5.75 ppm and from 9.24 to 5.84 ppm for M. rufiventris and S. littoralis, respectively. Except for the fact that cypermethrin was less toxic than deltamethrin and λ -cyhalothrin to the parasitoid.

The selectivity ratio of the tested pyrethroids varied between 0.9 to 4.48 at LC50 level, and between 0.58 to 3.46 at LC95 level in favor of the parasitoid M. rufiventris. The selective toxicity of these pyrethroids at LC50 level can be arranged as follows: cypermethrin (4.48), fenvalerate (2.87), deltamethrin (1.34), and λ -cyhalothrin (0.9). It would be more practical to calculate the toxicity ratio at LC₉₅ level, taking in consideration that in any pest control program, it is planned to maintain an adequate insecticide concentration on treated plants to secure 95% mortality ratio. Results in Table (4) show the selectivity ratio at LC95 level. According to these ratios, tested pyrethroids can be arranged as follows: fenvalerate (3.46), λ-cyhalothrin (1.45), cypermethrin (1.36), and deltamethrin (0.58). According to the toxicity ratios at LC50 and LC95 levels, cypermethrin and fenvalerate are positively selective pyrethroids, which have a minimum effect on the non-target organisms. The higher selectivity of these pyrethroids to M. rufiventris in relation to cotton leafworm reported here is supported by studies on other species (Wilkinson et al., 1979; Yu. 1988; Guedes et al., 1992; Zanuncio et al., 1993; Picanco et al., 1996 and Zanuncio et al., 1998).

These studies provide an opportunity for a better selection of insecticides used against insect pests under partial control by parasitoids and/or predators. Therefore, to maintain a reasonable population of the parasitoid, it is recommended to decrease the amount of deltamethrin and or λ -cyhalothrin used in the control of S. *littoralis* and preferably to shift to fenvalerate and cypermethrin which

are still very active against S. littoralis in addition to their safety to its parasitoid, M. rufiventris.

Detection of Resistance in El- Beheira Field Strain of Cotton Leafworm:

Pesticide resistance is one of the most serious problems in agricultural pests (National Research Council, 1998). Cotton fields in El-Beheira were heavily sprayed with insecticides to control cotton leafworm and bollworms every cotton season. These treatments include pyrethroids; therefore, the susceptibility of S. littoralis larvae, of El-Beheira field strain was determined to test their resistant potency to these tested pyrethroids. The resistance ratio (RR) was obtained by considering the LD50 values of laboratory strain as the reference values. Results in Table (5) show that larvae of the field strain were very resistant to the tested pyrethroids. At LD50 values, the unparasitized larvae were 224.48, 434.38, 462.55, and 290.31 times more resistant to λ-cyhalothrin, cypermethrin, deltamethrin and fenvalerate, respectively, than the unparasitized susceptible strain. On the other hand, parasitized larvae exhibited 535.68, 1028.8, 650.75 and 303.9 fold resistance for the tested pyrethroids, respectively. From these results, it was noticed that the parasitized larvae showed the greatest ratios of resistance to the tested pyrethroids, except fenvalerate. Mean of resistance ratios for parasitized and unparasitized larvae were 380.08, 731.59, 555.65 and 297.11 fold resistance to λ cyhalothrin, cypermethrin, deltamethrin and fenvalerate, respectively. The considerable high level of resistance to cypermethrin and deltamethrin might be due to the extensive use of these two pyrethroids in the cotton leafworm and bollworms control programs. This finding is in agreement with those obtained by several investigators, e.g., Riskallah et al., (1983), Martinez-Carrillo and Reynolds (1983), Umeda et al., (1988), El-Ghareeb and Mannaa (1989), Saini et al., (1989), Yu (1990), Pinchard and Vassal (1991), Yu (1992), Moustafa et al., (1992), Cochran (1993), Moustafa et al., (1995), Valles and Yu (1996), Sauphanor et al., (1997) and Abo-El-Saad et al., (1998). However, field strains of the Egyptian cotton leafworm, Spodoptera littoralis collected from different areas of El-Beheira Governorate showed resistance to cypermethrin ranged from 0.3- to 2.2- fold (Abo-El-Saad et al., 1998). This was in contrast to our results, which show high resistance to the tested pyrethroids.

Among the mechanisms responsible for resistance to insecticides, enzyme modifications play a very important role. Thus, the activities of ATP-ases and Carboxylesterases were measured in laboratory strain as well as El-Beheira field strain and cotton leafworm parasite *M. rufiventris*. Data in Table (6).

Results revealed that the specific activity of the ATPase was significantly higher in the larvae of laboratory strain (77.16 µmole of ir organic phosphate/ minute/ mg protein) than that in the larvae of the field strain (63.02 µmole of inorganic phosphate/ minute/ mg protein) and in the parasitoid, M. rufiventris (54.68 µmole of inorganic phosphate/ minute/ mg protein). Results in the same table show the in vivo effect of the sub-lethal dose of each pyrethroid (0.1 LD₅₀) on the specific activity of ATPase in the larvae of laboratory and field strains of S. littoralis as well as its parasitoid adults of M. rufiventris. The inhibitory ratios of λ-cyhalothrin, cypermethrin, deltamethrin and fenvalerate for ATPase in larvae of the field strain were: 31.8, 51.9, 59.7 and 26.5%, respectively, and the corresponding values for the laboratory strain were: 59.5, 69.8, 69.1 and 68.8%, respectively. On the other hand, the inhibitory ratios for the parasite, M. rufiventris were: 32.0, 44.6, 28.6 and 46.2%, respectively. Thus, ATPase of the larvae of the field strain and the parasitoid M. rufiventris were significantly less sensitive to inhibition by the tested pyrethroids than that of laboratory strain.

The weak inhibitory effect of the tested pyrethroids on ATPase activity was in agreement with the results obtained by Daoud et al., (1930), Bakry et al., (1984), El-Gendy et al., (1999), Osman et al., (1994), Abdel- All et al., (1990), Yang (1989), El-Ghareeb (1987) and Bartkowiak and Wilson (1995).

Carboxylesterase (CaE) is an enzyme responsible for the detoxification of chemicals that contain carboxyl ester linkages and detoxified by hydrolysis. Therefore, carboxylesterase specific activities in the larvae of laboratory and field strains of S. littoralis as well as in the parasitoid, M. rufiventris were measured in a spectrophotometric assay. Carboxylesterases activities (Figure 1) were significantly different for the two strains of S. littoralis and M. rufiventris. Larvae from field strain demonstrated 3 times and 3.8 times the carboxylesterase activity as larvae of the laboratory strain and the adults of M. rufiventris, respectively.

The differences in CaE activity between susceptible and field strains suggest the role of CaE in pyrethroid resistance. Many authors have reported this relationship. Devonshire and Moores (1982), Devonshire et al., (1986) and Field et al., (1988) found that the level of resistance in green peach aphid, Myzus persicae (Sulzer), associated with increased levels of total esterase, and in particular carboxylesterase. Abbassy et al., (1990) showed that field strain of S. littoralis possessed higher levels of esterases than the susceptible strain.

In conclusion, it appears that the lower activity and less sensitivity of ATPase to the tested pyrethroids and the elevated carboxylesterase activity contribute, at least in part, to resistance of *S. littoralis* field strain against the tested pyrethroids.

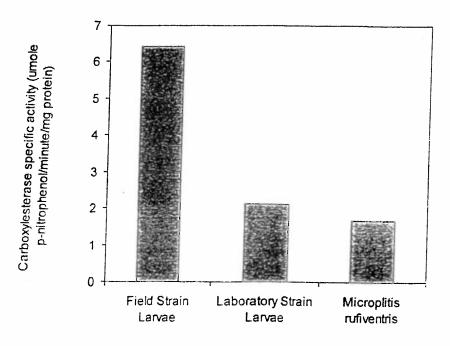


Figure (1): Specific activity of carboxylesterase specific activity of laboratory and field strains of *S. littoralis* and its parasite *M. rufiventris*.

25.52

9.57 - 7.67 12.00 - 8.82 16.47 - 10.28

8.57 10.29 13.02 10.64

3.37

10.65 - 8.34 14.67 - 10.82 20.19 - 15.30 14.15 - 10.50

9.43 12.60 17.58 12.19

λ-Cyhalothrin (2.5%ΕC) Cypermethrin (25%ΕC) Deltamethrin (2.5%WP) Fenvalerate (5%EC)

12.45 - 9.08

Slope

Confidence limits

ng/larva

Slope

Confidence limits

LD₃₆

Pyrethroid Insecticides

Unparasitized larvae

LDs

Parasitized larvae

Table (1): Toxicity of pyrethroid insecticides to the 4th instar larvae of a laboratory strain of the Egyptian cotton leafworm, S. littorulis by topical application method.

LD ₃₆ Confidence limits Slope LD ₃₆ Confidence limits slope Hg/larva Slope 10.042 0.049 - 0.036 2.987 0.015 0.020 - 0.012 (**NP) 0.029 0.034 - 0.024 2.645 0.010 0.014 - 0.006 (**NP) 0.038 0.047 - 0.036 4.539 0.035 0.046 0.027 (**Ord	Pyrethroid		Unparasitized larvae	maryando violente de distribucione de la companya del companya del companya de la		Parasitzed larvae	nitroma elimikandos des delabaturo — nota , pr
0.042 0.049 - 0.036 2.987 0.015 0.020 - 0.012 0.029 0.024 - 0.034 0.034 0.033 4.286 0.020 0.020 0.024 0.034 0.047 - 0.036 4.539 0.035 0.035 0.044 0.037	INSCRICINGS	LD ₃₀ µg/larva	Confidence limits	Slope	LD _{xo} µg/larva	Confidence limits	Slope
770.0 13.00	λ-Cyhalothrin (2.5%ΕC) Cypermethrin (2.5%ΕC) Deltamethrin (2.5%WP) Fenvalerate (5%EC)	0.042 0.029 0.038 0.041	0.049 - 0.036 0.034 - 0.024 0.043 - 0.033 0.047 - 0.036	2.987 2.645 4.286 4.539	0.015 0.010 0.020 0.035	0.020 - 0.012 0.014 - 0.006 0.027 - 0.014 0.044 - 0.027	2.380

Table (3): Toxicity of the tested pyrethroids to h.l. rustvenris and its host S. imoralis by residual film method.

	· manufacturing resident and the second and the sec	Slone	7 7	1.57	19.1	3.40
	Spodoptera littoralis	Confidence limits	8.92 - 3.14	7.89 - 2.86	12.33 - 4.07	11.86 - 7.17
		mdd	6.37	×. ∞ ×. ∞ ×. ×.	0.34	r
Paradicus and happy published and the management of the	Perioderal marquero consequente de decembra con consequente quality de la consequencia della consequencia de la consequencia de la consequencia de la consequencia de la consequencia della consequencia de la consequencia della consequencia della consequencia della consequencia de	Slope		2.73	2.91	
Microplitis rufiventris	Confidence limits		30.21 - 22.66	13.30 - 9.10	31.83 - 20.10	
de militario de maria de la compansión de maria	, C.C.	EMI 2	5.75 26.17	20.99	10.03	
Pyrethroids	manufaterilla entre productiva de la constanta	λ-Cybalothein O sactor	Cypermethrin (25%EC)	Fenvalerate (5%EC)		ния на на применя на применя в применя в применя в применя применя применя применя применя применя применя при

Table (4): Insecticide selectivity to M. rufiventris and its hast S. Ittoralis based on L.C. and L.C.,

		Mean	1.18	3.17
e manage de des la manage de des de la manage	Selectivity ratio*	LCss values	1,45	0.58 3.46
de constant de	Based on	LC _M values	e.e. 4. 5	2.87
ude	S. Illtoralis		71.16 53.34 74.84	28.12
LCss ppm	M. rufiventris	103 A	72.28	97.26
ude	S. littoralis	6.37	5.84	7.24
LCs ppm	M. rufiventris	5.75	26.17	
Tested Pyrethroids	тован жүйлөгүйнө айыртан анын жерейнөө айын айын айын айын айын айын айын айын	A-Cyfudothrin (2.5%EC) Cynemethrin (2.5%EC)	Deltamethrin (2.5%Wp) Fenvalentie (5%FC)	en e

26.54 68.80 46.18

78%

Table (5): Resistance ratios and toxicity of the tested pyrethroid insecticides to field strain of the Egyptian cotton keatworm.

(Mean		380.08 731.59 555.65 277.11
esistance ratio (RR)	Parasi		515 68 1028.x 650.75 303.9
Kesi	Unparas. Larvac		224.48 43.4.38 462.55 290.31
LDs (µg/larva)	Field strain	Pwasiti, L.	8.571 10.28% 3.015 10.636
		Unparasi, L.	9.428 12.597 17.577 12.193
	strain	Parasi, L ²	0.016 0.010 0.020 0.035
	Laboratory strain	Unpara. L.	0.042 0.029 0.038 0.042
Pyrathroid	Pyrcthroid Insecticides		A-cyhalothrin (2.5% EC) Cypermethrin (2.5% EC) Palvmethrin (2.5% WP) Fenvalerate (5% EC)

⁽¹⁾Unpara. L. " unparasitized larvae, and ⁽²⁾ Parasi. L. " parasitized larvae

Resistance ratio (RR) = LD30 for field strain / LD30 for laboratory strain

Table (6): In who effect of tested pyrethroids on ATPase activity of the 4th instar larvae of the Rayntian cotton leafworm and its narestical At authories

	Fenvalerate	S.A.		46.2944.2 24.0543.93 29.434.1.37
	rin**	1%	and the second second second second	59.7 69.14 28.58
	Deltamethrin**	S.A.		25.37±1.97 23.81±2.06 39.05±3.28
	4 8 111 1	1%	With the same of the same state of the same of the sam	51.9 69.77 44.57
	Cypermethrin*	S.A.		30,342,34 23,41±1,69 30,31±1,87
ı(rix.	• ·	***!%		31.8 59.5 32.0
stold, At. rufiventrix.	A-Cyhaloth	S.A		43.95±2.77 32.17±1.81 37.12±0.28
tworm and us para	Control S.A.*		A TOPPO E E SA es ma este materiamenta anto ampre estima de Adria de Adria, Armanendo en	63.0242.58 77.1642.65 54.6842.06
LANGE COLUMN ICE	Strains			Field strain larvae Laboratory strain larvae Alteroplitte rufiventris

*S.A. * \rectific activity nmote of inorganic phosphate/ minute/ nng protein.
** S. linovalis larvae applied with L.D.s. from each pyrchroid.
** M. ruf/wentris adults exposed to L.C.s. from each pyrchroid.
*** % of inhibition

REFERENCES

- Abbassy, M. A.; M. A. Abdel-Baki; M. M. Essaway and F. Sharaf (1990). Possible mechanism of organophosphorus resistance in field strains of cotton leafworm, *Spodoptera littoralis* (Boisd.). J. Pest Control and Environ. Sci., 2: 179-187.
- Abbott, Wx. S. (1925). A method of comparing the effectiveness of an insecticide. J. Econ. Entomol., 18: 265-267.
- Abdalla, S. A. (1982). Efficacy of certain synthetic pyrethroids, *Bacillus thuringiensis* and their combination on the Egyptian cotton leafworm, *Spodoptera littoralis* (Boisd.). Bull. Entomolo. Society of Egypt, 13: 145-155.
- Abdell-Al, A. Mohamed Shawir, Abd El- Rahman Mansy, Mamdouh Marzouk and Abd El- Salam Marei. (1990). The interaction of some synthetic pyrethroids, chlorinated hydrocarbon insecticides and their active derivatives with certain enzyme systems. J. Pest Conta. & Environ. Sci., 2: 43-52.
- Abo-El-Saad, Mahmoud, Mamdouh Marzouk and Mohamed Shawir. (1998).

 Molecular interactions correlated to field tolerance of Spodoptera littoralis (Boisd.) to certain insecticides. Alex. Sci, Exch., 19(1): 39-50.
- Bakry, N., A. Atteia, H. Aly and M. Abdel- Ghaney. (1984). Effect of synthetic pyrethroids on mitochondrial Mg+2-ATPase of Spodoptera littoralis. J. Egypt. Soc. Toxicol., 1: 87-100.
- Bartkowiak, D. J. and B. W. Wilson. (1995). Avian plasma carboxylesterase activity as a potential biomarker of organophosphate pesticide exposure. Environ. Toxicol. Chem., 14(2): 2149-2153.
- Bhushan, V. S. and K. M. Azam. (1990). Toxicity of synthetic pyrethroids to larval parasites of coconut black headed caterpillar, *Opisina aernosella*. Indian Coconut Journal Cochin, 20(9): 10-12.
- Cochran, Donald G. (1993). Decline of pyrethroid resistance in the absence of selection pressure in a population of German cockroaches (Dictyoptera: Blattellidae). J. Econ. Entomol., 86(6): 1639-1644.
- Daoud, Awwad Shaban. (1980). Toxicological studies on synthetic pyrethroids. A Thesis submitted for Ph. D. degree, Faculty of Agriculture, Alexandria University, Egypt.

- Devonshire, A. L. and G. D. Moores (1982). A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance on peach-potato aphids (M. persicae). Pestic. Biochem. Physiol., 18: 235-246.
- Devonshire, A. L.; G. D. Moores and R. H. Ffrench Constant (1982).

 Detection of insecticide resistance by immunological estimation of carboxylesterase activity in *Myzus persicae* (Sulzer) and cross reaction of the antiserum with *Phorodon humuli* (Schrank) (Hemiptera: Aphididae). Bull. Entomol, Res., 76: 97-107.
- El-defrawi, M. E., A. Toppozada, N. Mansour and M. Zeid. (1964). Toxicological studies on the Egyptian cotton leafworm, *Prodenia litura*. I. Susceptibility of different larval instars of Prodenia to insecticides. J. Econ. Entomol., 57(4): 591-593.
- El- Gendy, Kawther, Nagat Aly, Eiman Rashwaan and A. H. El- Sebae. (1999). Biochemical targets affected by sublethal doses of cypermethrin in mice. Egypt. J. Agric. Res., 77(2): 701-711.
- El-Ghareeb, A. M. (1987). Formamidines, benzoylphenyl ureas and a trifluoropropanone sulfide as pyrethroid synergists to larvae of *Spodoptera littoralis* (Boisd.). Assiut J. Agric. Sci., 18(4): 11-22.
- El-Ghareeb, A. M. and S. H. Manna. (1989). Insecticidal potency and development of resistance in the cotton leafworm in Upper Egypt. Assiut J. Agric. Sci., 20(2): 373-387.
- Elliott, Michea', Norman F. Janes, John H. Stevenson and John H. H. Walters. (1983). Insecticidal activity of the pyrethrins and related compounds. Part XIV: Selectivity of pyrethroid insecticides between Ephestia kuhniella and its parasite Venturia canescens. Pestic. Sci., 14: 423-426.
- Field, L. M.; A. L. Devonshire and B. G. Ford (1988). Molecular evidence that insecticide resistance in peach-potato aphids (*Myzus persicae*) results from amplification of an esterase gene. Biochem. J., 251: 309-312.
- Finney, D. J. (1971). Probit analysis. 3rd edition.

- Hegazi, E. M., A. M. El-Minshawy. (1979). Laboratory technique for mass rearing of *Microplitis rufiventris* Kok., an internal parasite of the cotton leafworm, *Spodoptera littoralis* (Boisd.) (Noctuidae: Lepidoptera). Boll. Lab. Entomol. Agrar. Filippo Silvestri. 36: 205-210.
- Hegazi, E. M., F. H. El-Gayar, SH. M. I. Kassem, I. A. Rawash and F. N. Nasr. (1985). Effect of micro encapsulated and emulsifiable concentrate insecticide formulations on *Spodoptera littoralis* (Boisd.) and its parasite *Microplitis rufiventris* (Kok.). Alex. J. Agric. Res., 30 (3): 1531-1538.
- Hegazi, E. M., I. A. Rawash, F. H. El-Gayar and E. A. Kares. (1982). Effect of parasitism by *Microplitis rufiventris* Kok. on the susceptibility of *Spodoptera littoralis* (Boisd.) larvae to insecticides. Acta Phytopathologica Academiae Scientiarum Hungaricae, 17(1-2): 115-121.
- Hower, A.A. and G.A. Davis (1984). Selectivity of insecticides that kill the potato leafhopper (Homoptera: Cicodellidae) and alfalfa weevil (Coleoptera: Curculionidae) and protect the parasite *Microctonus aethiopoides* Loan (Hymenoptera: Braconidae). J. Econ. Entomol., 77: 1601-1607.
- Incorporating the Agrochemicals Handbook. 10th Edition. Crop Protection Publication. Datirx International Ltd. (1995).
- Kandil, M. A., H. S. M. Fahmy and M. M. Rabei. (1984). Studies on the mechanism of resistance to pyrethroids in the cotton leafworm, *Spodoptera littoralis* (Boisd.). Bull. Entomolo. Society of Egypt, 14: 107-112.
- Kares, Esmat A., Aly A. El-Moursy, Nawal Zohdy, Amina M. Abdel-Rahman and Mona B. R. El-Mandarawy. (1998). Biological and toxicological studies on the parasitoid *Microplitis rufiventris* Kok. Egypt. J. Agric. Res., 76(4): 1499-1513.
- Koch, R. B. (1968). Chlorinated hydrocarbon insecticides: Inhibition of rabbit brain ATPase activities. J. Neurochemistry, 16: 269-271.
- Lowry Rosebrough and Farr Randall. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-
- Mani, M. and A. Krishnamoorthy. (1984). Toxicity of some insecticides to *Apanteles plutellae*, a parasite of the diamond back moth. Tropical Pest Management, 30(2): 130-132.

- Martinez-Carrillo, J. L. and H. T. Reynolds. (1983). Dosage-mortality studies with pyrethroids and other insecticides on the tobacco budworm (Lepidopter 1: Noctuidae) from the imperial valley, California. J. Econ. Entomol. 76(5): 983-986.
- Metcalf, R. L. (1958). Methods of testing chemicals on insect. Vol. I. Burges's Publishing Co., Mineapolis. Minn. Editted by H. H. Separd, pp. 92.
- Moi stafa, Fathia I., M. S. Shawir and M A. Mourad. (1992). Studies on resistance to insecticides. 11- Comparative susceptibility of insect populations of *S. littoralis* from several locations of the country to several insecticides from different groups. Alex. J. Agric. Res., 37(1): 505-521.
- Moustafa, Omayma K., H. A. Abd El-Rahman, M. M. Abd El-Kader, M. N. Shaaban and E. M. Radwan. (1995). Effect of selection with profensos on the tolerance pattern of *Spodoptera littoralis* (Boisd.) larvae. Egypt. J. Agric. Res., 73(3): 669-676.
- National Research Council (1986). Pesticide resistance: Strategies and tactics for management. National Academy Sciences, Washington, D.C., USA.
- Osman, K. A., H. R. Soltan, M. A. Marzouk and A. S. M. Marei. (1994). Toxicity and biocnemical effects of cypermethrin, fenvalerate and their pentafluorobenzyl- derivatives on the Egyptian cotton leafworm, *Spodoptera littoralis*. Con. In Sci. and Dev. Res., 47(702): 19-32.
- Picanço, M. C., R. N. C. Guedes, V. C. Batalha and R. P. Campos. (1996).

 Toxicity of insecticides to *Dione juno juno* (Lepedoptera: Heliconidae) and selectivity to two of its predaceous bugs. Trop. Sci., 36: 51-53.
- Pinchard, V. and J. M. Vassal. (1991). Mechanisms of resistance to pyrethroids in *Spodoptera littoralis* (Boisduval). Resistant Pest Management Newsletter, 3(2): 16-17.
- Powell, Janine E., Edgar G. King, JR, and Christine S. Jany. (1986). Toxicity of insecticides to adults *Microplitis croceipes* (Hymenoptera: Bracor idae). J. Econ. Entomol., 79: 1343-1346.

- Radwan, H. S. A., O. M. Assal and M. E. Samy. (1984). Reproductive inhibition activity of certain synthetic pyrethroids and IGRs against the cotton leafworm, *Spodoptera littoralis* (Boisd.). Zeitschrift Für Angewandte Entomologie, 97(2): 130-133.
- Riskallah, Medhat R., Samir F. Abd-Elghafar, Mohamed R. Abo-Elghar and Moustafa E. Nassar. (1983). Development of resistance and cross-resistance in fenvalerate and deltamethrin selected strains of *Spodoptera littoralis* (Boisd.). Pestic. Sci., 14: 508-512.
- Sauphanor, B., A. Cuany, J. C. Bouvier, V. Brosse, M. Amichot and J. B. Berge. (1997). Mechanism of resistance to deltamethrin in *Cydia pomonella* (L.) (Lepidoptera: Tortricidae). Pestic. Biochem. Physiol., 58: 109-117.
- Shukla, R. M., A. Shukla and M. L. Saini. (1988). Toxicity of some synthetic pyrethroids to the egg parasitoids, *Trichogramma brasiliensis* Ashmead and *Trichogramma pretiosum* Riely. Plant Protection Bulletin Faridabad, 40(3-4): 40-41.
- Siegfried, B. D., M. Ono and J. J. Swanson. (1997). Purification of a carboxylesterase associated with organophosphate resistance in the greenbug *Schizaphis graminum* (Homoptera: Aphididae). Insect Biochem. Physiol., 36: 229-240.
- Saini, R. K., N. P. Chopra and A. N. Verma. (1989). Development of insecticide resistance and cross-resistance in fenvalerate- and cypermethrin-selected strains of *Earias vittella* (Fab.). Pestic. Sci., 25: 289-295.
- Suinaga, Fábio Akiyoshi; Marcelo Picanco; José Cola Zanuncio and Cristina Schetino Bastos (1996). Physiological selectivity of insecticides to the defoliator caterpillar predator, *Podisus nigrispinus* (Dallas, 1851) (Heteroptera: Pentatomidae). Revista Arvore, Vicosa, MG, 20 (3): 407-414.
- Umeda, Kimitoshi, Toshihiko Yano and Masachika Hirano. (1988).

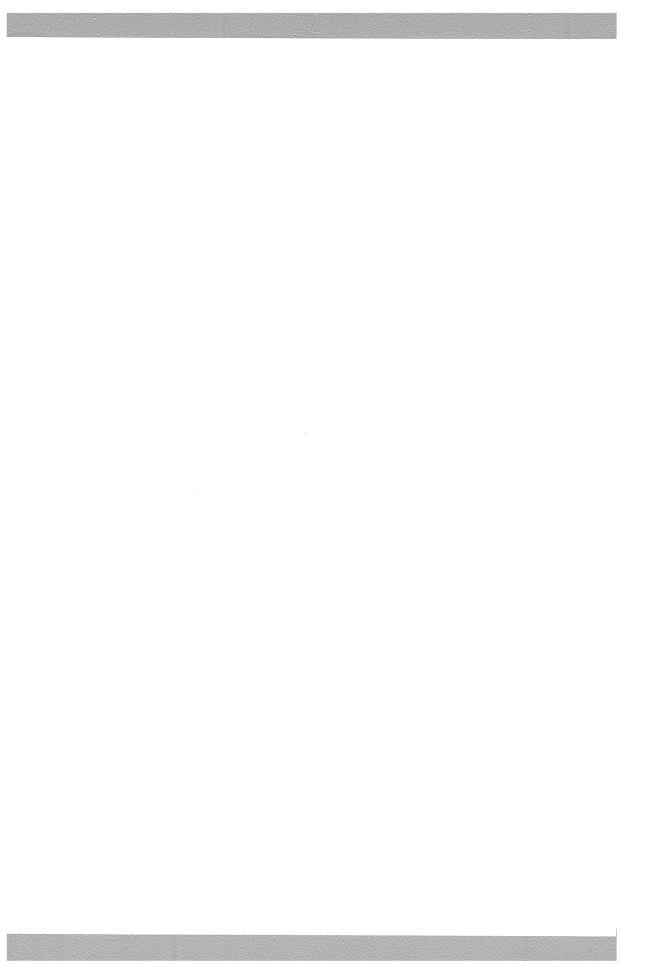
 Pyrethroid-resistance mechanism in German cockroach,

 Blattella germanica (Orthoptera: Blattellidae). Appl. Ent. Zool.,
 23(4): 373-380.
- Valles, Steven M. and Simon J. Yu. (1996). Detection and biochemical characterization of insecticide resistance in the German cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol., 89(1): 21-26.

- Verschoyle, R. D., E. Reiner, E. Bailey and W. N. Aldridge. (1982). Dimethyl phosphorothioates: Reaction with malathion and effect on malathion toxicity. Arch. Toxicol., 49: 293-301.
- Yang, X. (1989). Study on inhibiting effect of 14 insecticides on esterase of *Culex tritaeniorhynchus* from five geographic populations. Chinese Journal of Epidemiology, 10(3): 164-166.
- Yousef, Medy M., Mamdouh Marzouk and Abd El-Salam Marei. (1989).

 Studies on synthetic pyrethroids. 11- The role of geometric isomerization in the insecticidal activity of permethrin, cypermethrin and fenvalerate. Alex. J. Agric. Res., 34(1): 229-241.
- Yu, S. J. (1990). Liquid chromatographic determination of permethrin esterase activity in six phytophagous and entomophagous insects. Pestic. Biochem. Physiol., 36(3): 237-241.
- Yu, S. J. (1991). Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pestic. Biochem. Physiol., 39(1): 84-91.
- Yu, S. J. (1992). Detection and biochemical characterization of insecticide resistance in fall armyworm (Ledidoptera: Noctuidae). J. Econ. Entomol., 85(3): 675-682.
- Zanuncio, J. C., V. C. Batalha, R. N. C. Guedes and M. C. Picanço. (1998).

 Insecticide selectivity to Supputius cincticeps (Stal) (Het.:Pentatomidae) and its prey Spodoptera frugiperda (J. E. Smith) (Lep.: Noctuidae). J. Applied Entomol.,122: 457-460.
- Zanuncio, J. Cola, Raul Narciso C. Guedes, Juliana Ferreira Garcia and Luciano Amaral Rodrigues. (1993). Impact of two formulations of deltamethrin in aerial application against Eucalyptus caterpillars and their predaceous bugs. Med. Fac. Landbouww. Univ. Gent, 58/2a: 477-481.


المنخص العربي

سمية واختيارية البيروثرويدات لطفيل ميكروبليتس روفيفنتريس وعائله دودة ورق القطن (السلالة المعملية والحقلية)

مصطفى عيد اللطيف عباسي - عيد السلام حلمي بلال - عبد السلام محمد المرعي * - عاطف خضر تصار

> قسم كيمياء المبيدات كلية الزراعة بدمنهور – جامعة الإسكندرية * قسم كيمياء المبيدات – كلية الزراعة بالشاطبي – جامعة الإسكندرية

تم در اسة سمية المبيدات البيرثرويدية؛ اللامدا-سيهالوثرين ، السيبرمثرين ، الدلتامثرين ، والفينغالــيرات ضد حشرات يرقات ديدان ورق القطن Spodoptera littoralis السلالة الحقلية والسلالة المعملية المتطفل عليها وغير المتطفل عليها بالطفيل الداخلي Microplitis rufiventris . أوضحت النتائج أن مبيد السيبر مثرين هو الأكثر سمية ومبيد الفينفاليرات هو الاقل سمية ضمن المبيدات المختبرة ضد يرقات السلالة المعملية من ديدان ورق القطن ،ايضا وجد أن البرقات المتطفل عليها أكثر حساسية للمبيدات المختبرة عن البرقات غير المتطفل عليها كما وجد أن مبيد اللامداسيهالوثرين هو الأكثر سمية متبوعا بمبيد الفينفاليرات ثم السيبر مثرين والدلتامثرين ضه يرقات السلالة الحقلية من ديدان ورق القطن ، كانت سمية المبيدات البير ثرويدية المختبرة ضد اليرقات المتطفل عليها من السلالة الحقاية أعلى بدرجة بسيطة عن تلك اليرقات غير المتطفل عليها. أظهرت النتائج أن ترتيب سمية المبيدات ضد الطفيل كان هو نفسه ضد العائل فيما عدا أن مبيد السيبر مثرين كان أقل سمية عن مبيد الدلتامثرين واللامداسيهالوثرين ضد الطفيل. وتبعا لنسب الاختسيارية عسند مستويات السرج ق والسرج ق وجد ان كل من السيبرمثرين والفينفاليرات مبيدات اختيارية ويمكن استخدامها بأمان في مكافحة دودة ورق القطن مع استخدام الطفيل لتقليل أعــداد الحشرة، أوضحت يرقات السلالة الحقلية من ديدان ورق القطن نسب عالية من المقاومة للمبيدات المختبرة وكان متوسط نسب المقاومة (R.R) 380.08 ، 731.59 ، 555.65 و 297.11 ضمعف للمبيدات السيهالوثرين ، السيبرمثرين ، الدلتامثرين ، و الفينفاليرات على التوالي ونلك للبيرقات المنتطفل عليها وغبير المتطفل عليها كما و أظهرت النتائج أن نشاط انزيم الادينوزين تراى فوسفاتيز كان مرتفع في اليرقات المعملية عن اليرقات الحقلية المستخلص منها الاندريم أوعين نشياط الاندريم المستخلص من طفيل الميكروبليتس كما وجد أن نشاط انزيم الكربوكسيل استيراز المستخلص من يرقات السلالة الحقلية أعلى عن ذلك المستخلص من السلالة المعملية وحشرات الطفيل بحوالي 3 و 3.8 ضعف.

