بسم الله الرحمن الرحيم
أساليب البحث العلمي

د. عاطف محمد خضر نصار
مدير كيمياء وسمية المبيدات – قسم وقاية النبات
كلية الزراعة

برنامج تنمية قدرات أعضاء هيئة التدريس
Faculty and Leadership Development Center (FLDC)

Atef M.K. Nassar, 2015, 190116,
الاسم
Atef M.K. Nassar, 2015
التخصص البحثي
Faculty and Leadership Development Center (FLDC)
ميثاق اليوم

الاختلاف لا يفسد للود قضية

المشاركة الفعالة

الاحترام المتبادل

لا يسمح بالمنبهات الصوتية

لا يسمح بالهواتف المحمولة
جدول اليوم

الجلسة الأولى: 9:00 – 12:00

إستراحه: 12:00 – 12:30

الجلسة الثانية: 12:30 – 2:00
الأساليب التدريبية التي سيتم استخدامها خلال اليوم

لعب الأدوار

الألعاب والتمارين

مناقشات

العصف الذهني

تبادل الخبرات

ورش العمل

Atef M.K. Nassar, 2015 Faculty and Leadership Development Center (FLDC)
أساليب البحث العلمي

what do you expect?
“Disappointment is when a beautiful hypothesis is destroyed by an ugly fact”

Newton
الهدف العام
الهدف الرئيسي للبرنامج التدريبي هو اكسب المتدرّبين المعارف والمهارات الأساسية والسلوكيات الإيجابية تجاه أساليب البحث العلمي
الأهداف التفصيلية للبرنامج

بنهاية البرنامج سيكون المتدرب قادرًا على أن:

- يتعرف على مفهوم أساليب البحث العلمي
- يناقش طرق وأساليب البحث العلمي
- يحدد أهمية أساليب البحث العلمي
- يظهر اتجاهات إيجابية نحو أساليب البحث العلمي من خلال قدرته على كتابة رسالته وأبحاثه باتقان

Atef M.K. Nassar, 2015
Faculty and Leadership Development Center (FLDC)
محاور الجلسة التدريبية

مفهوم البحث العلمي
طرق البحث العلمي
مناهج البحث العلمي

البحث في قواعد البيانات
كتابة رسالة الماجستير أو الدكتوراه
تحضير البوسترات والعروض التقديمية بالمؤتمرات
Scientific Research

1: “Investigation or experimentation aimed at the discovery and interpretation of facts, revision of accepted theories or laws in the light of new facts, or practical application of such new or revised theories or laws”

2: “The collection of information about a particular subject”
Scientific Research

1. Observation
2. Hypothesis
3. Testing
4. Predictions

Test Hypothesis

True
False
خطوات البحث العلمي

- تحديد المجتمع والعينة
- تحديد أدوات جمع البيانات
- إجراء الدراسة
- تحليل البيانات
- النتائج والتوصيات

- مشكلة البحث
- الفرضيات والتساؤلات
- تعريف المصطلحات
- مراجعة الإنتاج الفكري
Research Cycle

1. Problem
2. Objectives
3. Research Strategy
4. Research Design
5. Literature Review
6. Gather Data
7. Interpret
8. Findings
أهمية قواعد البيانات المتاحة وأسمائها

نشاط تدريبي (10 ق)

- عبر ذهني
- مشاركة
- مناقشة الاقتراحات

Atef M.K. Nassar, 2015
Faculty and Leadership Development Center (FLDC)
البحث في قواعد البيانات

Atef M.K. Nassar, 2015

Faculty and Leadership Development Center (FLDC)
البحث في قواعد البيانات
البحث في قواعد البيانات

Atef M.K. Nassar, 2015
Faculty and Leadership Development Center (FLDC)
Our business is publishing. With more than 2,900 journals and 200,000 books, Springer offers many opportunities for authors, customers and partners.

Read and buy

You can read over eight million scientific documents on SpringerLink.

The 255,082 books in our Springer Shop come with free worldwide shipping for print copies, and our eBooks can be read on any device.
البحث في قواعد البيانات

Atef M.K. Nassar, 2015
Faculty and Leadership Development Center (FLDC)
البحث في قواعد البيانات

PQDT Open

With PQDT Open, you can read the full text of open access dissertations and theses free of charge.

Find Open Access Dissertations and Theses

Search Tips

Date degree received: from Any year to Any year

More Search Options

Copyright © 2016 ProQuest LLC. All rights reserved. Terms and Conditions
البحث في قواعد البيانات

Atef M.K. Nassar, 2015
Faculty and Leadership Development Center (FLDC)
البحث في قواعد البيانات

Google scholar

Stand on the shoulders of giants
البحث في قواعد البيانات
Reconstructing Speech from Human Auditory Cortex

Brian N. Pasley1,*, Stephen V. David2, Nina Mesgarani3,*, Aidan Flincker1, Shihab A. Shamma1, Nathan E. Cowan1, Robert T. Knight1,3, Edward F. Chang2

1Kresge Institute, Neuroscience Institute, University of California San Francisco, San Francisco, California, United States of America; 2Department of Neurobiology, University of Maryland, Baltimore, Maryland, United States of America; 3Department of Neurology, The Johns Hopkins University, Baltimore, Maryland, United States of America

Abstract

How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information on speech sounds can be recognized from population neural activity. We transmitted slow and Intermediate tempo Riutortastes, such as those capable of syllable onset, were accurately reconstructed using a linear model based on the auditory spindles. Higher-order reconstructions of the entire temporal sequence, such as syllables and notes, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of intermediate tempo Riutortaste, which is thought to be critical for speech intelligibility. The encoded speech representations allowed real-time and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural acoustic encoding mechanisms of speech acoustic parameters in higher order human auditory cortex.

Introduction

The auditory cortex encodes speech and other complex sounds into elementary frequency-modulation (FM) and intensity-modulation (IM) patterns that provide a basis for the perception of complex auditory soundscapes (Zheng and Parra, 2010). FM/IM patterns are thought to play a key role in the transformation of acoustic information into phonemic and perceptual representations (Izard et al., 2012; Parra and Mahdavi, 2005). FM/IM patterns can be decoded to predict the spoken word or sentence (Rajan et al., 2010). To investigate the role of the auditory cortex in speech perception, we monitored single-unit activity in nonprimary auditory cortex in the human superior temporal gyrus (STG) while participants listened to and repeated auditorily presented syllables at different tempos.

Results

Waves and instabilities in different English spoken were presented rapidly to 15 patients undergoing surgery for procedures for epilepsy or brain tumor. All patients in this study had normal hearing and language capacity as determined by neurologic exam. Cortical surface field potentials were recorded from surface recording electrodes. The potentials were time-locked to the onset of each syllable. The potentials were classified with linear discriminant analysis. The results showed that the auditory cortex was able to reconstruct the syllables with high accuracy.

Bio-Prodicts 3D

Annotate this document with one of your 3D systems

Further details can be found in the supplemental material.

References

Citation:

البحث في قواعد البيانات

http://www.esciencecentral.org/ebooks/

http://www.openthesis.org/

http://www.open.ac.uk/library/library-resources/theses-dissertations

http://pqdtopen.proquest.com/search.html

http://onlinebooks.library.upenn.edu/

http://www.intechopen.com/
أنشطة تدريبية (10 ق)
كتابة الرسالة العلمية

Atef M.K. Nassar, 2015
Faculty and Leadership Development Center (FLDC)
أقسام الرسالة العلمية الماجستير - الدكتوراه

✓ Title Page (Eng.)
✓ Dedication
✓ Abstract
✓ Acknowledgments
✓ List of Contents
✓ List of Tables
✓ List of Figures
<table>
<thead>
<tr>
<th>Section</th>
<th>Arabic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>المقدمة</td>
</tr>
<tr>
<td>Objectives</td>
<td>الاهداف المحددة</td>
</tr>
<tr>
<td>Hypotheses</td>
<td>الفرضيات</td>
</tr>
<tr>
<td>Literature Review</td>
<td>الخلفية العلمية</td>
</tr>
<tr>
<td>Materials & Methods</td>
<td>طرق العمل</td>
</tr>
<tr>
<td>Results</td>
<td>النتائج</td>
</tr>
<tr>
<td>Discussions</td>
<td>مناقشة النتائج</td>
</tr>
</tbody>
</table>
الاضافات العلمية الجديدة ✓
قائمة المراجع ✓
الملخص الإنجليزي ✓
الملخص العربي ✓
صفحة العنوان (عربي) ✓
Use of Somatic Embryogenesis in Potato (*Solanum tuberosum* L.) cv. Russet Burbank Improvement

Atef M. K. Nassar

Department of Plant Science
McGill University,
Montreal, Quebec, Canada

July 2009

A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of Doctor of Philosophy

©Atef Nassar 2009
Dedication

To ...
Abstract

‘Russet Burbank’, the most important potato in North America, was described as a putative periclinal mutation from ‘Burbank’ and has not parented outstanding cultivars. The current study aimed to: (1) investigate the present chimeral status of NB ‘Russet Burbank’ based on tuber periderm phenotype, (2) determine if yield and/or processing characteristics of NB ‘Russet Burbank’ could be improved through selection of intraclones, (3) determine whether pre-selected
ACKNOWLEDGMENTS

It is my honour to acknowledge everyone who has helped me bring this doctoral thesis project to completion by providing scientific advice and technical expertise, lab equipment, physical work, or encouragement. I would like to express my gratitude to Dr. Danielle Donnelly, my supervisor, for accepting me into her team and providing me with the necessary guidance, leadership, support, and encouragement needed to complete this project. I consider myself lucky for the opportunity to have her valuable supervision. I have learned a lot from her as a graduate student. I doubt that I will ever be able to convey my appreciation fully, but I owe her my perpetual thanks.

“And I would like to thank all those people who helped me write this book…”
TABLE OF CONTENTS

ABSTRACT. ... iii
RÉSUMÉ. ... v
ACKNOWLEDGMENTS. .. vii
TABLE OF CONTENTS. ... ix
LIST OF TABLES. .. xiii
LIST OF FIGURES. .. xviii
LIST OF APPENDICES. ... xxii
LIST OF ABBREVIATIONS .. xxiii
CONTRIBUTIONS OF AUTHORS 1
CHAPTER I. INTRODUCTION ... 2
2.1. Taxonomy of *S. tuberosum* spp. *tuberosum* (OECD 1997; Acquaah 2007)... 42

2.2. Statistics for potato production and harvested area in 2007 and consumption, energy, and protein in 2003; Mt, million metric tonnes; MHa, million hectares (from FAO 2008). ... 43

2.3. Potato tuber contents of major (g) and minor nutrients (mg) per 100 g
1.1. Diagram shows the periclinal chimera concept and possible genotypes that could emerge from isolating chimeral components. (A) A non-chimeral tuber derived from the mutated \(L_1 \) genotype. (B) Control, chimeral tuber, such as one derived from eye tissue. (C) A non-chimeral tuber derived from the wild-type internal genotype \(L_2, L_3 \).
نشاط تدريبي (10 ق)

كتابة المقدمة

عناصر الهامة؟؟؟
✓ Introduction

Opening sentence (a broad theme + attention grabber)

Sentences narrowing the theme

A thesis statement (as narrow as possible)
1.2. Objectives

The objectives of the current study were to:

✓ Objectives
✓ Hypotheses

Q. Where have all my socks gone?

Alternate Hypothesis Null Hypothesis

 ✓ Literature Review

 النشاط التدريبي (5 ق)

 عصف ذهني
Particular attention has been devoted to *Rubus* species because of their high antioxidant activity, anthocyanin pigment, and phenolic content (Deighton and others 2000; Moyer and others 2002; Sellappan and others 2002; Shahidi and Naczk 2003).

Several factors were reported to affect the overall proportion of somaclonal variants such as genotype, explant source, medium composition, and the duration of plant culture (Evans and Sharp 1986; Brown and Thorpe 1995; Brar and Jain 1998). The exact mechanism of somaclonal variation is not yet understood either genetics or epigenetics.

The possible genetic mechanisms affecting DNA changes in potato somaclones could vary extensively. These could include changes in chromosome number (aneuploidy, aneusomy, mixploidy, and polyploidy) or structure (Evans and Sharp 1986; Gavrilenko et al. 1999). DNA changes could include nuclear DNA amplification or deletion, DNA sequence rearrangements (deletion, and/or addition), non-active transposable elements e.g. retrotransposable (Flavell et al. 1992), DNA methylation (Brar and Jain 1998), mitochondrial DNA changes e.g., sequence alteration or presence of low molecular weight species (Gengenbach et al. 1977; Kemble and Shepard 1984), alteration of a single gene base pair, or deamplification of ribosomal-RNA genes (Landsmann and Uhrig 1985).
✔ Materials & Methods ✔ طرق العمل ✔
Results

Discussions

Table 1 – Chromatographic and spectroscopic characteristics of anthocyanins detected in Andes berry (Rubus glaucus Benth).

<table>
<thead>
<tr>
<th>Peak</th>
<th>t<sub>r</sub> (min)</th>
<th>Anthocyanin assignment</th>
<th>Parent ion M<sup>+</sup> (m/z)</th>
<th>Fragment ions M<sup>+</sup>-X (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.58</td>
<td>Cy 3-sambubioside</td>
<td>581.15</td>
<td>287.06 (M<sup>+</sup>-sam)</td>
</tr>
<tr>
<td>2</td>
<td>6.60</td>
<td>Cy 3-glucoside</td>
<td>449.11</td>
<td>287.06 (M<sup>+</sup>-glu)</td>
</tr>
<tr>
<td>3</td>
<td>6.77</td>
<td>Cy 3-xylorutinoside</td>
<td>727.21</td>
<td>287.06 (M<sup>+</sup>-xylrut), 581 (M<sup>+</sup>-rham), 433 (M<sup>+</sup>-rham-gluc)</td>
</tr>
<tr>
<td>4</td>
<td>6.94</td>
<td>Cy 3-rutinoside</td>
<td>595.16</td>
<td>287.06 (M<sup>+</sup>-rut), 449 (M<sup>+</sup>-rham)</td>
</tr>
<tr>
<td>5</td>
<td>7.16</td>
<td>Pg 3-glucoside</td>
<td>433.10</td>
<td>271.05 (M<sup>+</sup>-glu)</td>
</tr>
<tr>
<td>6</td>
<td>7.59</td>
<td>Pg 3-rutinoside</td>
<td>579.15</td>
<td>271.05 (M<sup>+</sup>-rut)</td>
</tr>
</tbody>
</table>

Cy = cyanidin; Pg = pelargonidin; gluc = glucose; rham = rhamnose; rut = rutinose; sam = sambubioside; xylrut = xylorutinoside.
Conclusions & Recommendations

نشاط تدريبي (5 ق)
Conclusions & Recommendations
Journal

Conference
References Cited

Thesis

Book
Manual

Web-Site
References Cited

بيغلهول، ر.، بونيتوا، ر. وكييسلستروم ت (1997): أساسيات علم الوبائيات
الكتاب الطبي الجامعي، منظمة الصحة العالمية، المكتب الإقليمي لشرق
المتوسط، الإسكندرية، جمهورية مصر العربية.

عويس، خير الدين علي (1997): دليل البحث العلمي، دار الفكر العربي
القاهرة، جمهورية مصر العربية.
نشاط تدريبي (10 ق)
تصميم الدراسة في الكليات النظرية

- صياغة المشكلة وتحديد أبعادها
- صياغة الفروض
- تحديد وسائل وآدوات القياس
- إجراء الاختبارات الأولية
- تحديد مكان وموعد التجربة
- التأكد من دقة النتائج من خلال اختبار الدلاله لدري الثقة
- إعداد التصميم التجريبي
- تحديد العوامل المستقلة تحت التجربة
- إجراء التجربة
- تجميع وتحليل وعرض النتائج
- الخلاصة والتوصيات
 أبواب الرسالة في الكليات النظرية
الفصل الأول: الإطار العام للدراسة

• المقدمه
• مشكلة الدراسة
• الفرضيات
• الأهداف
• محدودات الدراسة
• نموذج الدراسة
• التعريفات الإجرائية
 أبواب الرسالة في الكليات النظرية

 الفصل الثاني: الإطار النظري للدراسة

• المقدمه
• الدراسات السابقة (عربي واجنبي)
• الميزة النسبية للدراسة الحالية عن السابقة
أبواب الرسالة في الكليات النظرية
الفصل الثالث: منهجية الدراسة

المقدمة
تصميم الدراسة
مصادر جمع المعلومات
العينة موضع الدراسة
أدوات القياس
الأسلوب الإحصائي
أبواب الرسالة في الكليات النظرية
الفصل الرابع: مناقشة النتائج واختبار الفرضيات

الفصل الخامس: الخلاصة والتوصيات

• المقدمه
• عرض النتائج
• مناقشة الفرضيات

• المقدمه
• الاستنتاجات
• التوصيات
 أبواب الرسالة في الكليات النظرية

قائمة المراجع:

• المراجع العربية
• المراجع الأجنبية

قائمة الملاحق
محتوي المقترح البحثي في الكليات النظرية

- العنوان باللغتين العربية والإنجليزية
- المقدمة
- أهداف الدراسة
- الدراسات السابقة
- منهج البحث وساليته
- الجدول الزمني للبحث
- الميزانية التقديرية
- مصادر التمويل
- المراجع
نشاط تدريبي (5 ق)

ما الذي يجعلك مؤلف؟
كيف يتم ترتيب أسماء المؤلفين للبحث؟

كتابة أسماء المؤلفين (Authorship)
لكي تكون مؤلفاً!!
من النشاطات التي يقوم بها بعض الأشخاص لا تشفع لهم بأن يكونوا مؤلفين ما يلي:

1- جمع المعلومات أو إجراء المقابلات الشخصية.
2- التنقيح أو المراجعة اللغوية والمطبعة للبحث.
3- طباعة الاستبانة أو البحث.
4- تعديل بسيط في بعض أسئلة الاستبانة.
5- إعداد الجداول تحت إشراف الباحث.
6- البحث عن مراجع ومكتبة ووسائل الإعلام الإلكترونية.
7- تقديم اقتراحات بسيطة حول ترتيب فصول البحث أو المحتوى.

ترتيب أسماء المؤلفين

Atef M.K. Nassar, 2015
Faculty and Leadership Development Center (FLDC)
نشاط تدريبي (5 ق)

عندما تحضر مؤتمر علمي
كيف تحضر بوستر؟؟؟؟؟؟؟؟؟
كيفية تحضير بوستر علمي

Atef M.K. Nassar, 2015

Faculty and Leadership Development Center (FLDC)
Cooling Effects of Dirt Purge Holes on the Tips of Gas Turbine Blades

Eric Couch, Jesse Christophel, Erik Hohlfeld, and Karen Thole

Gas turbine engines run better at higher combustion temperatures

At higher combustion temperatures, these engines generate more power and use less fuel. However, these temperatures are restricted by melting temperatures of the turbine blades downstream of the combustor (see Figure 1).

Figure 1. Pratt & Whitney F119 gas turbine engine.

Dirt purge holes on turbine blade tips allow for higher combustion temperatures

Harmful hot gases from the combustor leak across the gap between the blade tip and the shroud (see Figure 2). Dirt purge holes expel foreign particles from the blade tip so that film cooling holes are not blocked.

Figure 2. Flow at the tip region of a turbine blade.

The project goal was to find the film cooling effects of these dirt purge holes

To find the effects, we performed wind tunnel experiments with scaled turbine blades. The wind tunnel was low speed and low temperature, and the blades, shown in Figure 3, were scaled at 12 times their normal size. To measure temperatures on the blade tip, we used an infrared camera. Tip gap sizes and amount of coolant flow from the dirt purge holes were both varied.

Figure 3. Large-scale turbine blade in wind tunnel.

Temperature measurements were converted to dimensionless cooling effectiveness

\[n = \frac{T_{in} - T_{aw}}{T_{in} - T_{C}} \]

where \(T_{in} \) is maximum temperature \(T_{aw} \) is ambient water temperature \(T_{C} \) is temperature on tip surface

Cooling increased with blowing ratio

The effectiveness contours of Figure 4 show that cooling increased with blowing ratio.

Figure 4. Measurements of film cooling effectiveness.

Tip size dramatically affected cooling

In Figure 5, the lateral averages of effectiveness plotted against the axial chord length show that tip size dramatically affected the cooling.

Figure 5. Laterally averaged effectiveness plotted against normalized axial chord.

In summary, dirt purge holes provide cooling to the tip surface

While intended to remove dirt from the blade, dirt purge holes also provide cooling to the tip surface. This cooling is enhanced with a small tip gap as the dirt purge floods the tip region near the leading edge with cool air.

Acknowledgments

The sponsor for this project was Pratt & Whitney.
Atef M.K. Nassar, 2015

Faculty and Leadership Development Center (FLDC)

Practical Interdisciplinary Management of Emergencies on Dialysis (PRIME)
Developing a Renal Simulation Education Programme
Harrison LEA, Fielding CA, Cocking O, Tomlinson K, Taal MW, Jeffreys HJ, and Pithan Z.
* Department of Renal Medicine, † Renal Dialysis Unit, ‡ Clinical Skills Department, Royal Derby Hospital

Introduction
Emergencies occur frequently during haemodialysis (HD) sessions; require immediate and effective management. They present a number of specific challenges unique to the patient and treatment process. Junior doctors often lack experience and understanding of dialysis and the nuances of management. They may not significantly contribute to the renal unit nurses in these circumstances. However, nursing staff within our unit did not feel fully confident in providing support should junior staff feel anxious. Support training did not adequately prepare them to deal with emergency situations.

Practical, realistic simulation training can improve clinical knowledge and technical skills, and strengthen communication and team behavior, resulting in improved patient safety.

Purpose
The aim was to design and deliver a simulation-based training programme providing practical interprofessional training for renal doctors, nurses, and dialysis technicians. The overall aim was to develop staff skills and knowledge, and ensure a consistent approach from one shift to the next, across the renal ward, assessment and management of emergency situations, and improving patient safety.

Design and Delivery
Training sessions take place on the dialysis unit, using a high-fidelity computer-controlled patient simulator named "Essentium®" (SimMan® 3G). Essential simulation elements are dialysis machines, new, and a simulation environment that simulates an actual real-world setting.

Introduction
Emergency situations occur frequently during haemodialysis (HD) sessions; require immediate and effective management. They present a number of specific challenges unique to the patient and treatment process. Junior doctors often lack experience and understanding of dialysis and the nuances of management. They may not significantly contribute to the renal unit nurses in these circumstances. However, nursing staff within our unit did not feel fully confident in providing support should junior staff feel anxious. Support training did not adequately prepare them to deal with emergency situations.

Practical, realistic simulation training can improve clinical knowledge and technical skills, and strengthen communication and team behavior, resulting in improved patient safety.

Purpose
The aim was to design and deliver a simulation-based training programme providing practical interprofessional training for renal doctors, nurses, and dialysis technicians. The overall aim was to develop staff skills and knowledge, and ensure a consistent approach from one shift to the next, across the renal ward, assessment and management of emergency situations, and improving patient safety.

Design and Delivery
Training sessions take place on the dialysis unit, using a high-fidelity computer-controlled patient simulator named "Essentium®" (SimMan® 3G). Essential simulation elements are dialysis machines, new, and a simulation environment that simulates an actual real-world setting.

Introduction
Emergency situations occur frequently during haemodialysis (HD) sessions; require immediate and effective management. They present a number of specific challenges unique to the patient and treatment process. Junior doctors often lack experience and understanding of dialysis and the nuances of management. They may not significantly contribute to the renal unit nurses in these circumstances. However, nursing staff within our unit did not feel fully confident in providing support should junior staff feel anxious. Support training did not adequately prepare them to deal with emergency situations.

Practical, realistic simulation training can improve clinical knowledge and technical skills, and strengthen communication and team behavior, resulting in improved patient safety.

Purpose
The aim was to design and deliver a simulation-based training programme providing practical interprofessional training for renal doctors, nurses, and dialysis technicians. The overall aim was to develop staff skills and knowledge, and ensure a consistent approach from one shift to the next, across the renal ward, assessment and management of emergency situations, and improving patient safety.

Design and Delivery
Training sessions take place on the dialysis unit, using a high-fidelity computer-controlled patient simulator named "Essentium®" (SimMan® 3G). Essential simulation elements are dialysis machines, new, and a simulation environment that simulates an actual real-world setting.

Introduction
Emergency situations occur frequently during haemodialysis (HD) sessions; require immediate and effective management. They present a number of specific challenges unique to the patient and treatment process. Junior doctors often lack experience and understanding of dialysis and the nuances of management. They may not significantly contribute to the renal unit nurses in these circumstances. However, nursing staff within our unit did not feel fully confident in providing support should junior staff feel anxious. Support training did not adequately prepare them to deal with emergency situations.

Practical, realistic simulation training can improve clinical knowledge and technical skills, and strengthen communication and team behavior, resulting in improved patient safety.

Purpose
The aim was to design and deliver a simulation-based training programme providing practical interprofessional training for renal doctors, nurses, and dialysis technicians. The overall aim was to develop staff skills and knowledge, and ensure a consistent approach from one shift to the next, across the renal ward, assessment and management of emergency situations, and improving patient safety.

Design and Delivery
Training sessions take place on the dialysis unit, using a high-fidelity computer-controlled patient simulator named "Essentium®" (SimMan® 3G). Essential simulation elements are dialysis machines, new, and a simulation environment that simulates an actual real-world setting.

Introduction
Emergency situations occur frequently during haemodialysis (HD) sessions; require immediate and effective management. They present a number of specific challenges unique to the patient and treatment process. Junior doctors often lack experience and understanding of dialysis and the nuances of management. They may not significantly contribute to the renal unit nurses in these circumstances. However, nursing staff within our unit did not feel fully confident in providing support should junior staff feel anxious. Support training did not adequately prepare them to deal with emergency situations.

Practical, realistic simulation training can improve clinical knowledge and technical skills, and strengthen communication and team behavior, resulting in improved patient safety.

Purpose
The aim was to design and deliver a simulation-based training programme providing practical interprofessional training for renal doctors, nurses, and dialysis technicians. The overall aim was to develop staff skills and knowledge, and ensure a consistent approach from one shift to the next, across the renal ward, assessment and management of emergency situations, and improving patient safety.

Design and Delivery
Training sessions take place on the dialysis unit, using a high-fidelity computer-controlled patient simulator named "Essentium®" (SimMan® 3G). Essential simulation elements are dialysis machines, new, and a simulation environment that simulates an actual real-world setting.
اشترك في مؤتمر علمي وطلب منك تحضير عرض تقديمي
ما هي مكونات العرض التقديمي؟؟؟؟
صمم واحد!! ورشح فرد من المجموعة لعرضه
عنوان الدراسة
خلفية علمية
أهداف الدراسة
طريقة العمل وتحليل النتائج
عرض النتائج
الخلاصة

15 ق تقديم
 ومناقشة و أسئلة

منهم 3 ق
لحظات تعلم!