A. BASIC INFORMATION

Title: Organic Chemistry
Code: 1ABIO, 1BBIO

Hours:
Lectures 2 hrs/week
Practical 2 hrs/week
Total 120 hrs

B. PROFESSIONAL INFORMATION

1. Overall aims of the course:
 - Explore & study the family of organic compounds called hydrocarbons
 - Knowledge: about physicochemical properties of solution, colloidal state, law of mass action, osmosis, surface tension, acidity and alkalinity and the PH values and its determination.
 - Study the structure and function of different types of bacterial, plant or animal cells, cell organelles, cell membrane and techniques to separate the cell organelles.
 - The previous courses give a good introduction to study chemistry of naturally occurring biomolecules e.g. carbohydrates, lipids, proteins, nucleoproteins and other bioactive molecules and also study their building blocks monomers and polymers structure and other properties that full-fill their functions. This course intends also to study the structure and functions of vitamins and co-enzymes. This course intends also to study the important aspects of molecular biology and biotechnology.

2. Intended Learning Outcomes (ILOs) of the Course:
 a. Knowledge and Understanding:
 a1 Understand structures of aliphatic and aromatic hydrocarbons, Alcohols, Phenols, Ether, Aldhydes, Ketons, Carboxylic acids, Ester and Amines.
 a2 Know the physicochemical properties of solution, colloidal state, law of mass action, osmosis, surface tension, acidity and alkalinity and the PH values and its determination.
 a3 Know the structure and function of different types of cells either bacterial, plant or animal cells, cell organelles, cell membrane and techniques to separate the cell organelles.
 a4 Know structures and function of carbohydrates lipids proteins, nucleoproteins, vitamins and co-enzymes.
a5 Know the important aspects of molecular biology and biotechnology.
a6 Deeply correlate the properties of each molecules and their function
a7 Full-fill the relationship between the structure and function of each molecules

b. Intellectual Skills: The students demonstrate the ability (with limited reliance on guidance) to:
b1 Highlight important clinical research questions stemming from a case or patient interaction.
b2 Evaluate scientific/clinical information and critically analyze conflicting data and hypotheses.
b3 Recognize and evaluate the relationship between evidence, audit and observed variation in clinical practice
b4 Highlight the important clinical problem from case interaction and utilizing available data
b5 Choose and apply appropriate quantitative and qualitative methodologies.
b6 Exhibit creativity or resource fullness in their professional learning, scientific endeavour and clinical practice

c. Professional and Practical Skills: The students will be able to detect and characterize different molecules. He/she should be able (with limited reliance on guidance) to:
c1 Use appropriate laboratory wares & equipments safely and competently.
c2 Work separately as well as in team work with maximum benefit from the place and minimum loss or lab ware deterioration.
c3 Extract the results; conclude comments, present data confidently.
c4 Convince others with purpose of the work, the reliability of the results during lab meeting seminars.

d. General and Transferable Skills: The students will able to:
d1 Conduct themselves in a professional manner with regard to the veterinarian professional and legal responsibilities and understanding and apply the ethical codes as set out in general organization of veterinary services (GOVS).
d2 Work effectively as a member of a team in the delivery of services to community.
d3 Communicate effectively with the public, colleagues and appropriate authorities
d4 Utilize communicating skills, have access to the internal and retrieve information
d5 Understanding career paths.
d6 Produce reports in a form that is satisfactory and understandable.
d7 Perform research and solve any emerging disease problem

d8 Perform research on common disease problems in the surrounding domestic and wild animals in the community

3. Contents:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Ist Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of hours</td>
</tr>
<tr>
<td>▪ Hydrocarbons, Alcohol, Phenols, Aldhyde, Ketones, Carboxylic acids, Ether, ester and Amines</td>
<td>12</td>
</tr>
<tr>
<td>▪ Physicochemical properties of solution, colloidal state, law of mass action, osmosis, surface tension, acidity and alkalinity, PH values and determination</td>
<td>12</td>
</tr>
<tr>
<td>▪ An introduction to cell morphology</td>
<td>4</td>
</tr>
<tr>
<td>▪ Structure, function and chemistry of carbohydrates</td>
<td>16</td>
</tr>
<tr>
<td>▪ Structure, function and chemistry of lipids</td>
<td>16</td>
</tr>
</tbody>
</table>
2nd Semester

- Structure, function and chemistry of proteins 16 8 8
- Structure, function and chemistry of nucleoproteins 8 4 4
- Structure, function and chemistry of vitamins and co-enzymes 16 8 8
- Molecular biology and biotechnology 20 10 10

Total 120 60 60

4. Teaching and Learning Methods:

4.1 Lectures
4.2 Information collection, books, internet, periodicals.
4.3 Research assignments
4.4 Practical
4.5 Field visits
4.6 Discussions

5. Student Assessment Methods:

<table>
<thead>
<tr>
<th>Exam</th>
<th>Week</th>
<th>Nature of Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Written Mid-term</td>
<td>8th</td>
<td>Multiple choice questions and short answer questions. To assess the ability to understand and remember knowledge, and intellectual skills</td>
</tr>
<tr>
<td>5.2 Written Final-term</td>
<td>16th</td>
<td>To assess the ability to understand and remember knowledge, and intellectual skills</td>
</tr>
<tr>
<td>5.3 Practical Final-term</td>
<td>16th</td>
<td>Including case studies. To assess professional and practical skills</td>
</tr>
<tr>
<td>5.4 Oral Final-term</td>
<td>16th</td>
<td>To assess skills of discussion</td>
</tr>
</tbody>
</table>

Assessment Schedule (in each semester):

<table>
<thead>
<tr>
<th>Exam</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment 1</td>
<td>Written Mid-term 8th</td>
</tr>
<tr>
<td>Assessment 2</td>
<td>Written Final-term 16th</td>
</tr>
<tr>
<td>Assessment 3</td>
<td>Practical Final-term 16th</td>
</tr>
<tr>
<td>Assessment 4</td>
<td>Oral Final-term 16th</td>
</tr>
</tbody>
</table>

Weighing of assessments

<table>
<thead>
<tr>
<th>Exam</th>
<th>Per Semester (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment 1</td>
<td>Written Mid-term</td>
<td>10</td>
</tr>
<tr>
<td>Assessment 2</td>
<td>Written Final-term</td>
<td>25</td>
</tr>
<tr>
<td>Assessment 3</td>
<td>Practical Final-term</td>
<td>10</td>
</tr>
<tr>
<td>Assessment 4</td>
<td>Oral Final-term</td>
<td>5</td>
</tr>
</tbody>
</table>

Total 50 100

6. List of References:

6.1. Course Notes:
- Department Notes (Printed)

6.2. Essential Books:

6.3. Recommended Books:

6.4. Periodicals, websites, etc
- Academic departments on the web

7. Facilities Required for Teaching and Learning
- Fine chemicals, advanced laboratory wares & animals housing facilities with high technical instrumentations capable for accommodating the number of students
- Access to internet with the journals site Subscription
- Audio visual aids & Virtual reality facilities
- Based learning facilities

Course Coordinator: Dr. Osama El-Gazzar

Head of Department: Prof. Dr. Hatem Salah El-Din

Date: